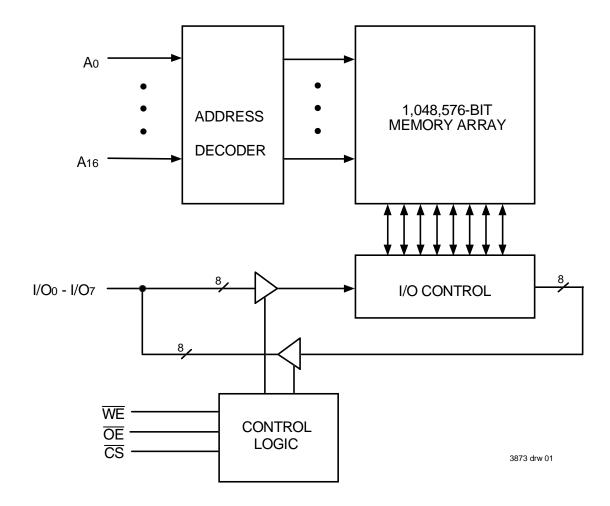


3.3V CMOS Static RAM 1 Meg (128K x 8-Bit) Center Power & Ground Pinout

IDT71V124SA

Features

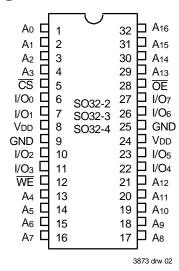

- 128K x 8 advanced high-speed CMOS static RAM
- JEDEC revolutionary pinout (center power/GND) for reduced noise
- Equal access and cycle times
 - Commercial: 10/12/15/20ns
 - Industrial: 10/12/15/20ns
- One Chip Select plus one Output Enable pin
- Inputs and outputs are LVTTL-compatible
- Single 3.3V supply
- Low power consumption via chip deselect
- Available in a 32-pin 300- and 400-mil Plastic SOJ, and 32-pin Type II TSOP packages.

Description

The IDT71V124 is a 1,048,576-bit high-speed static RAM organized as 128K x 8. It is fabricated using IDT's high-performance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs. The JEDEC center power/GND pinout reduces noise generation and improves system performance.

The IDT71V124 has an output enable pin which operates as fast as 5ns, with address access times as fast as 9ns available. All bidirectional inputs and outputs of the IDT71V124 are LVTTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used; no clocks or refreshes are required for operation.

Functional Block Diagram



NOVEMBER 2003

©2003-Integrated Device Technology, Inc.

DSC-3873/07

Pin Configuration

SOJ and TSOP **Top View**

Truth Table⁽¹⁾

<u>cs</u>	ŌĒ	WE	VO.	Function
L	L	Н	DATAout	Read Data
L	Χ	L	DATAIN	Write Data
L	Н	Н	High-Z	Output Disabled
Н	Χ	Χ	High-Z	Deselected – Standby

NOTE:

1. $H = V_{IH}, L = V_{IL}, X = Don't care.$

Capacitance

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	6	pF
Cvo	I/O Capacitance	Vout = 3dV	7	pF

1. This parameter is guaranteed by device characterization, but is not production tested.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Value	Unit	
VDD	Supply Voltage Relative to GND	-0.5 to +4.6	V	
VIN, VOUT	Terminal Voltage Relative to GND	-0.5 to V _{DD} +0.5	V	
Ta	Commercial Operating Temperature	-0 to +70	°C.	
IA	Industrial Operating Temperature	-40 to +85		
TBIAS	Temperature Under Bias	-55 to +125	°C	
Tstg	Storage Temperature	-55 to +125	°C	
Рт	Power Dissipation	1.25	W	
Іоит	DC Output Current	50	mA	

NOTE:

3873 tbl 01

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliabilty.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	GND	V DD
Commercial	0°C to +70°C	0V	See Below
Industrial	-40°C to +85°C	0V	See Below

3873 bl 02a

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DD} ⁽¹⁾	Supply Voltage	3.15	3.3	3.6	V
V _{DD} ⁽²⁾	Supply Voltage	3.0	3.3	3.6	V
Vss	Ground	0	0	0	V
VIH	Input High Voltage	2.0		V _{DD} +0.3 ⁽³⁾	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

3873 tbl 04

- NOTES:
- 1. For 71V124SA10 only.
- 2. For all speed grades except 71V124SA10. 3. VIH (max.) = VDD+2V for pulse width less than 5ns, once per cycle.
- 4. VIL (min.) = -2V for pulse width less than 5ns, once per cycle.

DC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Iu	Input Leakage Current	VDD = Max., VIN = GND to VDD		5	μΑ
I _{LO}	Output Leakage Current	$V_{DD} = Max.\overline{CS} = V_{IH}, V_{OUT} = GND \text{ to } V_{DD}$		5	μΑ
Vol	Output Low Voltage	IOL = 8mA, VDD = Min.		0.4	V
Vон	Output High Voltage	$I_{OH} = -4mA$, $V_{DD} = Min$.	2.4		V

3873 tbl 05

DC Electrical Characteristics^(1, 2)

(VDD = Min. to Max., VLC = 0.2V, VHC = VDD - 0.2V)

		71V124SA10		71V124SA12		71V124SA15		71V124SA20		
Symbol	Parameter	Com'l	Ind	Com'l	Ind	Com'l	Ind	Com'l	Ind	Unit
lcc		145	150	130	140	100	120	95	115	mA
ISB		45	50	40	40	35	40	30	35	mA
ISB1	Full Standby Power Supply Current (static) $\overline{CS} \ge VHC$, Outputs Open, $VDD = Max.$, $f = 0^{(S)}$	10	10	10	10	10	10	10	10	mA

3873 tbl 06

NOTES:

- 1. All values are maximum guaranteed values.
- 2. All inputs switch between 0.2V (Low) and VDD-0.2V (High).
- 3. $f_{MAX} = 1/t_{RC}$ (all address inputs are cycling at f_{MAX}); f = 0 means no address input lines are changing.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figure 1 and 2

3873 tbl 07

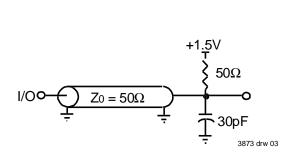
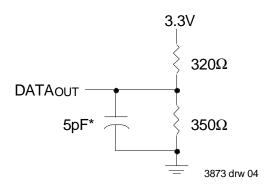



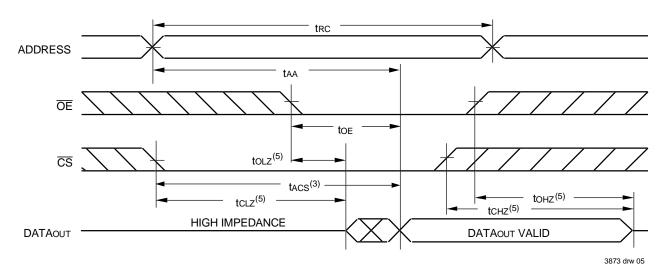
Figure 1. AC Test Load

*Including jig and scope capacitance.

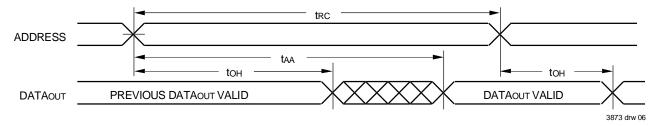
Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

AC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)

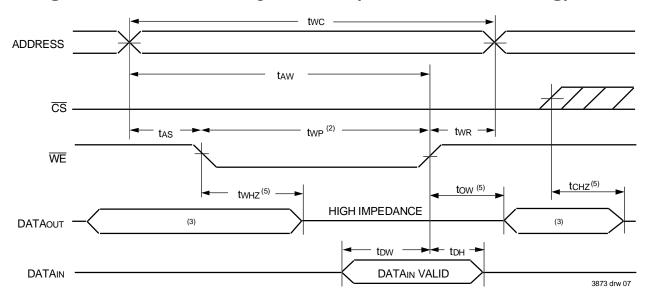

		71V12	24SA10	71V12	24SA12	71V12	4SA15	71V12	24S A20	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Мах.	Min.	Max.	Unit
READ CYC	READ CYCLE									
trc	Read Cycle Time	10		12	_	15	_	20		ns
taa	Address Access Time	_	10	_	12		15		20	ns
tacs	Chip Select Access Time	_	10		12		15		20	ns
talz(1)	Chip Select to Output in Low-Z	4		4	_	4	_	4		ns
tcHz ⁽¹⁾	Chip Deselect to Output in High-Z	0	5	0	6	0	7	0	8	ns
toe	Output Enable to Output Valid	_	5		6		7		8	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	0		0	_	0	_	0		ns
tонz ⁽¹⁾	Output Disable to Output in High-Z	0	5	0	5	0	5	0	7	ns
tон	Output Hold from Address Change	4		4	_	4	_	4		ns
WRITE CY	CLE									
twc	Write Cycle Time	10		12		15	_	20		ns
taw	Address Valid to End-of-Write	7		8		10	_	12		ns
tcw	Chip Select to End-of-Write	7		8		10	_	12		ns
tas	Address Set-up Time	0		0	_	0		0		ns
twp	Write Pulse Width	7		8		10	_	12		ns
twr	Write Recovery Time	0		0	_	0	_	0		ns
tow	Data Valid to End-of-Write	5		6	_	7		9		ns
tон	Data Hold Time	0		0	_	0		0		ns
tow ⁽²⁾	Output Active from End-of-Write	3		3	_	3	_	4		ns
twHZ ⁽²⁾	Write Enable to Output in High-Z	0	5	0	5	0	5	0	8	ns

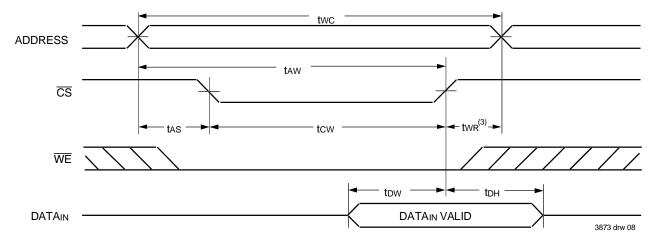
NOTES:


3873 tbl 08

^{1.} This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.

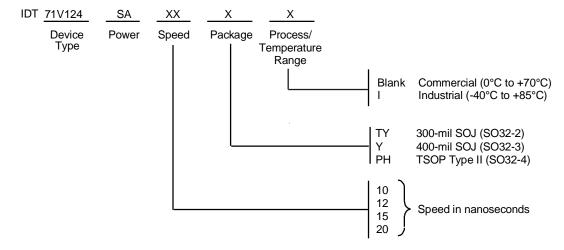
Timing Waveform of Read Cycle No. 1(1)


Timing Waveform of Read Cycle No. 2^(1, 2, 4)


NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected, $\overline{\text{CS}}$ is LOW.
- 3. Address must be valid prior to or coincident with the later of $\overline{\text{CS}}$ transition LOW; otherwise tax is the limiting parameter.
- 4. $\overline{\text{OE}}$ is LOW.
- 5. Transition is measured $\pm 200 mV$ from steady state.

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)(1,2,4)


Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)(1, 4)

NOTES:

- 1. \underline{A} write occurs during the overlap of \underline{a} \underline{L} OW \overline{CS} and \underline{a} \underline{L} OW \overline{WE} .
- 2. \overline{OE} is continuously HIGH. During a \overline{WE} controlled write cycle with \overline{OE} LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.
- $3. \quad \text{During this period, I/O pins are in the output state, and input signals must not be applied.}$
- 4. If the CSLOW transition occurs simultaneously with or after the WELOW transition, the outputs remain in a high impedance state. CS must be active during the tcw write period.
- 5. Transition is measured ±200mV from steady state.

Ordering Information

3873 drw 09

Datasheet Document History

11/22/99		Updated to newformat
	Pg. 1–4, 7	Added Industrial Temperature range offerings
	Pg. 2	Added Recommended Operating Temperature and Supply Voltage table
	Pg. 6	Revised footnotes on Write Cycle No. 1 diagram
	Pg. 8	Added Datasheet Document History
08/30/00	Pg. 3	Tighten Icc and IsB
	Pg. 4	Tighten AC Characteristics to Hz, tow and tw Hz
08/22/01	Pg. 7	Removed footnote "400-mil SOJ package only offered in 10ns and 12ns speed grade"
11/30/03	Pg. 1,3,7	Added Industrial temperature offering 10ns speed grade

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674

www.idt.com

for Tech Support: sramhelp@idt.com 800-544-7726, x4033