Power driver for CD and MD applications BH6514AFS

The BH6514AFS is a PWM driver for CD and MD motors and actuators.

In addition to a two-channel "H" bridge for the actuators, the IC includes a three-phase driver for spindle motor drive, and a single-channel half bridge for synchronous rectification of the spindle drive V_M.

Applications

Power drive for CD and MD players

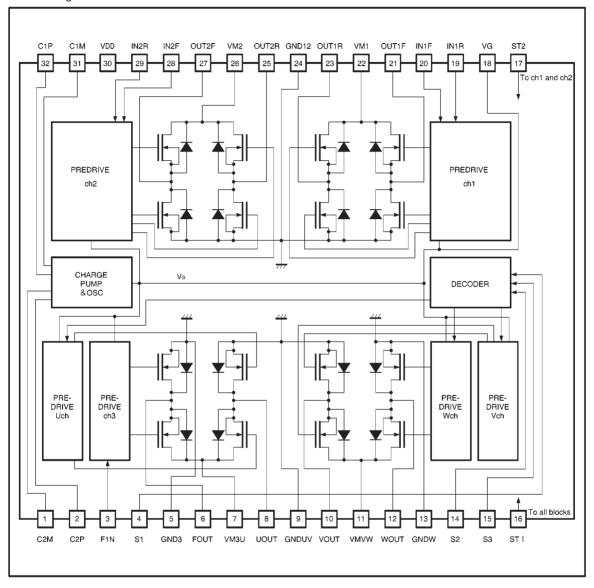
Features

- 1) Compatible with PWM input.
- 2) Charge pump circuit to increase Vg.
- 3) Charge pump circuit has free-running oscillator.
- 4) Each "H" bridge power supply can be supplied independently for efficient application.
- 5) Low on-resistance.
- 6) Low power consumption.
- 7) Compact SSOP-A32 package.

● Absolute maximum ratings (Ta = 25°C)

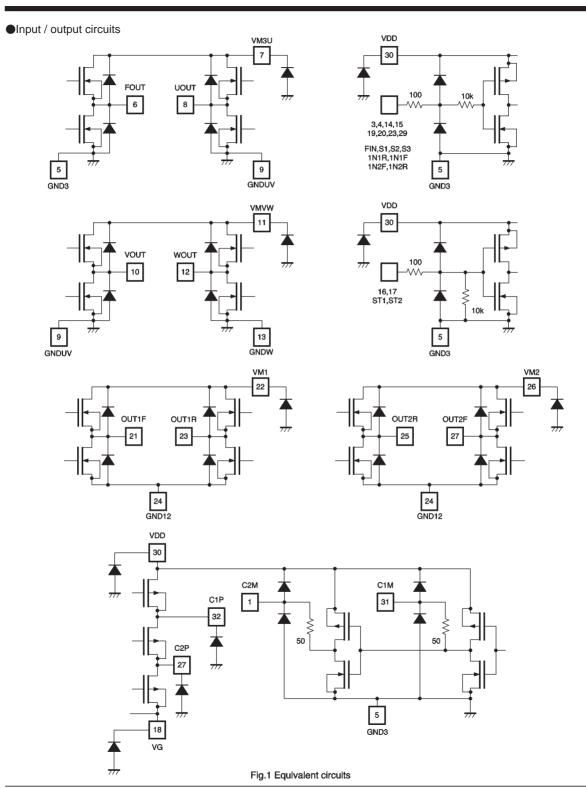
Parameter	Symbol	Limits	Unit
H-bridge power supply voltage	VM	9	V
Control circuit power supply voltage	VDD	9	V
Pre-driver power supply voltage	VG(18pin)	12	V
Driver output current	lo (ch3, U, V, Wch) lo (ch1, ch2)	500 300*1	mA
Power dissipation	Pd	850* ²	mW
Operating temperature	Topr	−20~+85	°C
Storage temperature	Tstg	−55∼ +150	°C

^{*1 500}msec.


•Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	™ in.	⊡ ур.	Шмах.	Unit
H-bridge power supply voltage	VM	1.6	2.5	5.5	V
Control circuit power supply voltage	VDD	2.4*3	3.0	5.5	V
Pre-driver power supply voltage	VG (18pin)	Vм+3.0	9	11.5	V
Pulse input frequency	f123IN FUVWMIN	-	176.4 –	200 400	kHz Hz

^{*3} When the ambient temperature is in the range -20°C to 85°C.


^{*2} Reduced by 6.8mW for each increase in Ta of 1°C over 25°C.

Block diagram

Pin descriptions

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	C2M	Negative connection terminal for charge pump capacitor 2	32	C1P	Positive connection terminal for charge pump capacitor 1
2	C2P	Positive connection terminal for charge pump capacitor 2	31 C1M		Negative connection terminal for charge pump capacitor 1
3	FIN	Brushless motor power supply input	30	VDD	Pre block power supply
4	S1	Stepping motor input	29	IN2R	Channel 2 reverse input
5	GND3	Channel 3 power GND	28	IN2F	Channel 2 forward input
6	FOUT	Brushless motor power supply output	27	OUT2F	Channel 2 forward output
7	VM3U	Channel 3, U channel power block power supply	26	VM2	Channel 2 power block power supply
8	UOUT	Stepping motor output (U phase)	25	OUT2R	Channel 2 reverse output
9	GNDUV	U channel, V channel power GND	24	GND12	Channel 1,2 power GND
10	VOUT	Stepping motor output (V phase)	23	OUT1R	Channel 1 reverse output
11	VMVW	V channel, W channel power block power supply	22	VM1	Channel 1 power block power supply
12	WOUT	Stepping motor output (W phase)	21	OUT1F	Channel 1 forward output
13	GNDW	W channel power GND	20	IN1F	Channel 1 forward input
14	S2	Stepping motor input	19	IN1R	Channel 1 reverse input
15	S3	Stepping motor input	18	VG	Charge pump output
16	ST1	Standby	17	ST2	Channels 1 and 2 mute

•Electrical characteristics (unless otherwise noted, Ta = 25°C, VM = 2.5V, V_{DD} = 3V, VG is the internally pumped output, $f_{123}IN = 176kHz$, $f_{UVWIN} = 1kHz$, and $R_L = 8\Omega - 47\mu H$)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
⟨H-bridge power supply current⟩							
No input	Імѕт	_	_	1	μΑ	_	
⟨Control circuit power supply current⟩							
Standby	IDDST	_	_	1	μΑ	ST1=L	
No signal	Ірро	_	0.6	1	mA	ST2=low level, all inputs low level	
Operation	IDDA	_	3.1	6.5	mA	ST1 and ST2=high level, all channels driven together	
Pre-drive power supply vo	ltage>						
No input	lg ₁	7.5	8.9	10	V	ST1 and ST2=high level, all inputs low level	
Operation	lg2	6.0	7.6	9.5	V	ST1 and ST2=high level, all channels driven together	
Logic input characteristics	>						
Input high level voltage	ViH	V _{DD} -0.6	_	_	V	_	
Input low level voltage	VIL	_	_	0.6	V	_	
Input high level current 1	Іінт	_	_	1	μΑ	V _{IN} =3V, each driver input	
Input low level current 1	lıL1	-1	_	_	μΑ	V _{IN} =0V, each driver input	
Input high level current 2	I _{IH2}	_	300	600	μΑ	V _{IN} =3V, ST1 and ST2 pins	
Input low level current 2	l _{IL2}	-1	_	_	μΑ	V _{IN} =0V, ST1 and ST2 pins	
Output on registance	Rоизиvw	_	0.8	1.2	Ω	Sum of top and bottom resistors	
Output on-resistance	RON12	_	1.2	2.0	Ω	VG=10V	
Output transmission dalou time 1	trise	_	0.2	1	μsec	ch1 ch0 ch0	
Output transmission delay time 1	TFALL	_	0.2	1	μsec	- ch1, ch2, ch3	
Output transmission delay time 2	tedge	_	0.3	20	μsec	Uch, Vch, Wch	
Minimum input pulse width	tmin	200	_	_	nsec	Output pulse width 2 / 3 t _{Min.} or more	
⟨Oscillator circuit⟩							
Free-running frequency	fosc	150	300	400	kHz	Pin 32 waveform monitor	

ONot designed for radiation resistance.

Measurement circuit

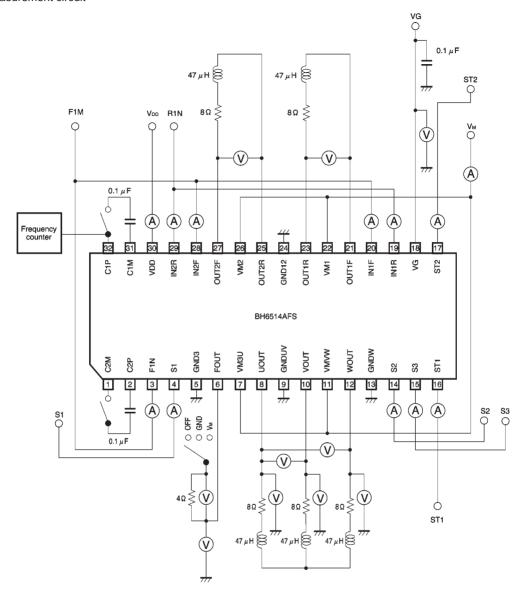


Fig.2

Circuit operation

Driver truth table

Focus / tracking coil

ST1	ST2	IN1, 2F	IN1, 2R	OUT1, 2F	OUT1, 2R
Н	Н	L	L	L	L
Н	Н	L	H L		Н
Н	Н	Н	L	Н	L
Н	Н	Н	Н	L	L
L	Х	Х	Х	Z	Z
Х	L	Х	Х	Z	Z

Brushless motor power supply

ST1	ST2	FIN	Fouт
Н	Х	L	L
Н	Х	Н	Н
L	Х	Х	Z

Stepping motor

ST1	ST2	S3	S2	S1	Uouт	Vout	Wout
Н	Х	L	L	L	Н	L	Z
Н	Х	L	L	Н	Н	Z	L
Н	Х	L	Н	L	Z	Н	٦
Н	Х	L	Н	Н	L	Н	Z
Н	Х	Н	L	L	L	Z	Н
Н	Х	Н	L	Н	Z	L	Н
Н	Х	Н	Н	Х	Z	Z	Z
L	Х	X	Х	Х	Z	Z	Z

Application example

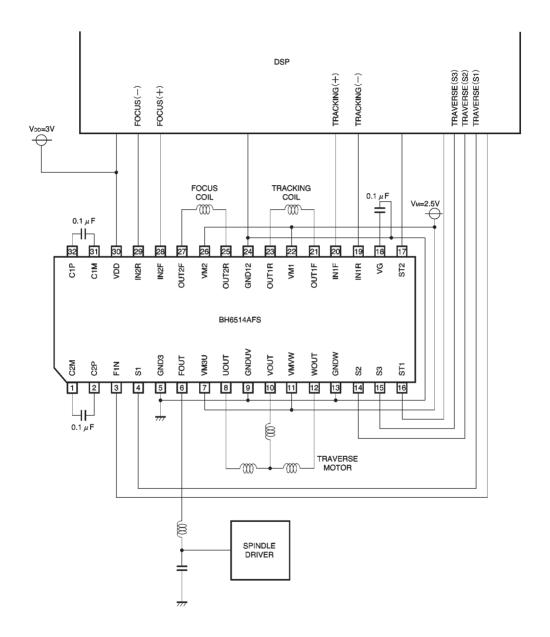
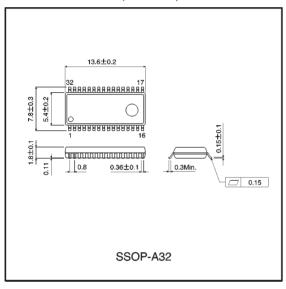



Fig.3

Operation notes

- (1) The charge pump circuit is a x3 multiplier that uses the voltage on pin 30 as its reference. Therefore, set the voltage (V_{DD}) on pin 30 so that the VG does not exceed its rating.
- (2) If you will use an externally-supplied VG, disconnect the capacitors between pins 31 and 32 and pins 1 and 2.

External dimensions (Units: mm)

