

June 2008

FDH5500

N-Channel UltraFET Power MOSFET 55V, 75A, 7m Ω

Features

- Typ $r_{DS(on)}$ = 5.2m Ω at V_{GS} = 10V, I_D = 75A
- Typ $Q_{g(10)}$ = 118nC at V_{GS} = 10V
- Simulation Models
 - -Temperature Compensated PSPICE and SABERTM
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- Related Literature
 - -TB334, "Guidelines for Soldering Surface Mount Componets to PC Boards"
- Qualified to AEC Q101
- RoHS Compliant

Applications

- DC Linear Mode Control
- Solenoid and Motor Control
- Switching Regulators
- Automotive Systems

SOURCE DRAIN DRAIN (FLANGE)

JEDEC TO-247

Symbol

Package

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units	
V_{DSS}	Drain to Source Voltage	(Note 1)	55	V
V_{DGR}	Drain to Gate Voltage ($R_{GS} = 20k\Omega$)	(Note 1)	55	V
V_{GS}	Gate to Source Voltage		±20	V
	Drain Current Continuous (T _C < 135°C, V _{GS} = 10V)		75	А
' D	Pulsed		See Figure 4	_ ^
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	864	mJ
D	Power Dissipation		375	W
P_D	Dreate above 25°C		2.5	W/oC
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	
T _L	Max. Lead Temp. for Soldering (at 1.6mm from case for 10sec)		300	°C
T _{pkg}	Max. Package Temp. for Soldering (Package Body for 10sec)		260	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	0.4	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-247, 1in ² copper pad area	30	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDH5500	FDH5500	TO-247	Tube	N/A	30 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics					

B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0V$		55	-	-	V
	Zoro Cato Voltago Prain Current	$V_{DS} = 50V, V_{GS} = 0V$		-	-	1	^
DSS	I _{DSS} Zero Gate Voltage Drain Current	$V_{DS} = 45V$	Γ _C = 150°C	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	2.9	4	V
r _{DS(on)}	Drain to Source On Resistance	I _D = 75A, V _{GS} = 10V	ı	5.2	7	mΩ

Dynamic Characteristics

C _{iss}	Input Capacitance	V 05V V	0) /	-	3565	-	pF
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0$ $= 1 \text{ MHz}$	$V_{DS} = 25V, V_{GS} = 0V,$		1310	-	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112		-	395	-	pF
$Q_{g(TOT)}$	Total Gate Charge at 20V	$V_{GS} = 0$ to 20V		-	206	268	nC
Q _{g(10)}	Total Gate Charge at 10V	$V_{GS} = 0$ to 10V	$V_{DD} = 30V$	-	118	153	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0$ to 2V	$I_D = 75A$ $R_1 = 0.4\Omega$	-	6.2	8.1	nC
Q _{gs}	Gate to Source Gate Charge		$I_0 = 1.0 \text{mA}$	-	17.8	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		9	-	51	-	nC

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units

Switching Characteristics

t _{on}	Turn-On Time		-	-	185	ns
t _{d(on)}	Turn-On Delay Time	.,	-	13.7	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_D = 75A,$ $R_L = 0.4\Omega, V_{GS} = 10V,$	-	102	-	ns
t _{d(off)}	Turn-Off Delay Time	$R_{GS} = 2.5\Omega$	-	34	-	ns
t _f	Fall Time	1.65 2.022	-	22	-	ns
t _{off}	Turn-Off Time		-	-	91	ns

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	I _{SD} = 75A	-	1	1.25	V
t _{rr}	Reverse Recovery Time	I = 75A dl /dt = 100A/	-	60	78	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 75A$, $dI_{SD}/dt = 100A/\mu s$	-	77	100	nC

Starting T_J = 25°C to175°C.
 Starting T_J = 25°C, L = 0.48mH, I_{AS} = 60A

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

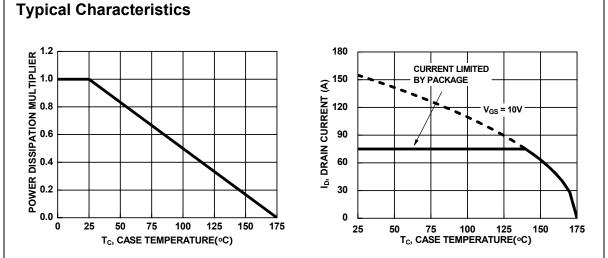


Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

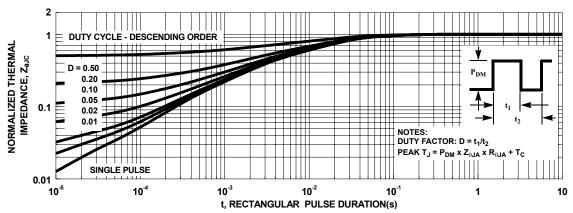


Figure 3. Normalized Maximum Transient Thermal Impedance

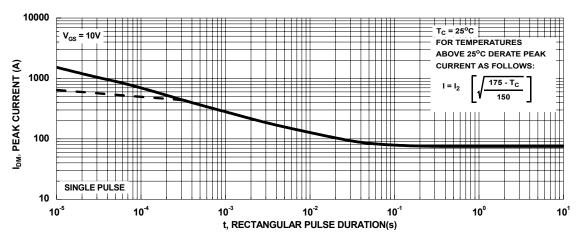


Figure 4. Peak Current Capability

Typical Characteristics

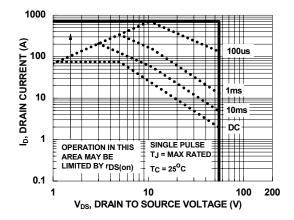
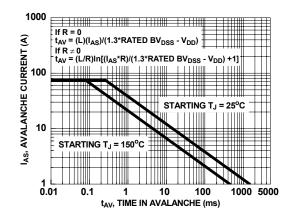
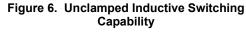




Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

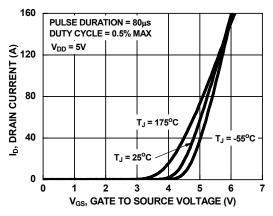


Figure 7. Transfer Characteristics

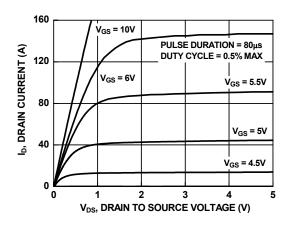


Figure 8. Saturation Characteristics

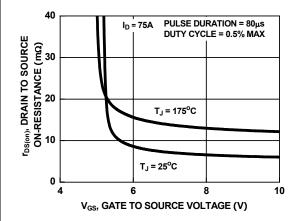


Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

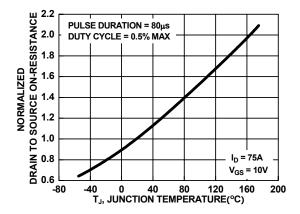


Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics

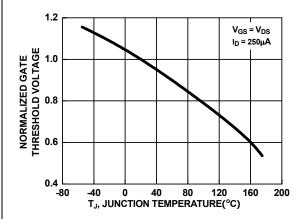


Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

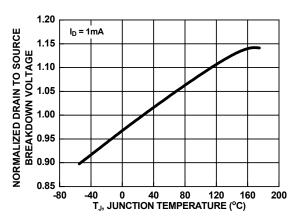


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

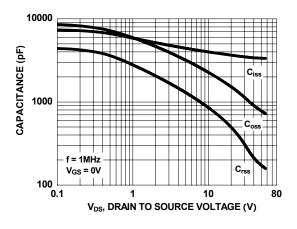


Figure 13. Capacitance vs Drain to Source Voltage

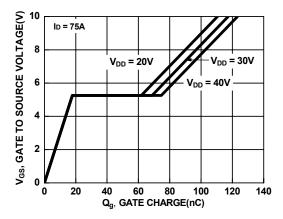


Figure 14. Gate Charge vs Gate to Source Voltage

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx®

Build it Now™

CorePLUS™

CorePOWER™

CROSSVOLT™

CTL™

Current Transfer Logic™

Current Transfer Logic EcoSPARK[®] EfficentMax[™] EZSWITCH[™] *

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]
FACT[®]
FAST[®]
FastvCore[™]
FlashWriter[®] *

FPS™ F-PFS™ FRFET®

Global Power ResourceSM Green FPS™

Green FPS™ e-Series™ GTO™

IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™

MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®

PDP-SPM™
Power-SPM™
PowerTrench®
Programmable Active Droop™

QFET®

QS™ Quiet Series™ RapidConfigure™

Saving our world 1mW at a time™ SmartMax™ SMART START™

SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuperMOS™

SYSTEM ®

The Power Franchise®

TinyBoost™
TinyBoost™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
µSerDes™

SerDes[™]
UHC[®]
Ultra FRFET[™]
UniFET[™]
VCX[™]

VisualMax™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I34