Features

- Industry-standard Architecture
 - Emulates Many 20-pin PALs®
 - Low-cost Easy-to-use Software Tools
- High-speed Electrically-erasable Programmable Logic Devices
 - 10 ns Maximum Pin-to-pin Delay
- Several Power Saving Options

Device	I _{CC} , Standby	I _{CC} , Active	
ATF16V8B	50 mA	55 mA	
ATF16V8BQ	35 mA	40 mA	
ATF16V8BQL	5 mA	20 mA	

- CMOS and TTL Compatible Inputs and Outputs
 - Input and I/O Pull-up Resistors
- Advanced Flash Technology
 - Reprogrammable
 - 100% Tested
- High-reliability CMOS Process
 - 20 Year Data Retention
 - 100 Erase/Write Cycles
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Commercial, and Industrial Temperature Ranges
- Dual-in-line and Surface Mount Packages in Standard Pinouts
- PCI-compliant
- Green Package Options (Pb/Halide-free/RoHS Compliant) Available

1. Description

The ATF16V8B is a high-performance CMOS (electrically-erasable) programmable logic device (PLD) that utilizes Atmel's proven electrically-erasable Flash memory technology. All speed ranges are specified over the full 5V \pm 10% range for industrial temperature ranges, and 5V \pm 5% for commercial temperature ranges.

Several low-power options allow selection of the best solution for various types of power-limited applications. Each of these options significantly reduces total system power and enhances system reliability.

The ATF16V8Bs incorporate a superset of the generic architectures, which allows direct replacement of the 16R8 family and most 20-pin combinatorial PLDs. Eight outputs are each allocated eight product terms. Three different modes of operation, configured automatically with software, allow highly complex logic functions to be realized.

Highperformance EE PLD

ATF16V8BQ ATF16V8BQL

3. Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0 V to +7.0 V ⁽¹⁾
Voltage on Input Pins with Respect to Ground During Programming2.0 V to +14.0 V ⁽¹⁾
Programming Voltage with Respect to Ground2.0 V to +14.0 V ⁽¹⁾

*NOTICE:

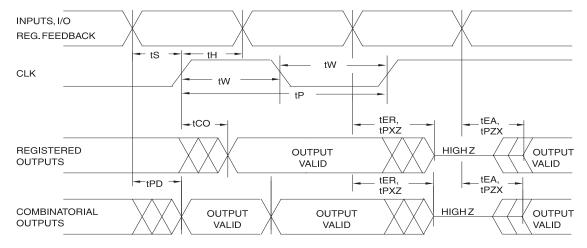
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns.
 Maximum output pin voltage is V_{CC} + 0.75V DC, which may overshoot to 7.0V for pulses of less than 20 ns.

4. DC and AC Operating Conditions

	Commercial	Industrial
Operating Temperature (Ambient)	0°C - 70°C	-40°C - 85°C
V _{CC} Power Supply	5V ± 5%	5V ± 10%



4.1 DC Characteristics

Symbol	Parameter	Condition			Min	Тур	Max	Units
I _{IL}	Input or I/O Low Leakage Current	$0 \le V_{IN} \le V_{IL}(Max)$				-35	-100	μΑ
I _{IH}	Input or I/O High Leakage Current	$3.5 \le V_{IN} \le V_{CC}$	$3.5 \le V_{IN} \le V_{CC}$				10	μΑ
			B-10	Com.		55	85	mA
			D-10	Ind.		55	95	mA
		V _{CC} = Max,	B-15	Com.		50	75	mA
I_{CC}	Power Supply Current, Standby	$V_{IN} = Max$	B-15	Ind.		50	80	mA
	Carroni, Cianady	Outputs Open	BQ-10	Com.		35	55	mA
			BQL-15	Com.		5	10	mA
			BQL-15	Ind.		5	15	mA
	Clocked Power Supply Current	V _{CC} = Max, Outputs Open, f = 15 MHz	B-10	Com.		60	90	mA
				Ind.		60	100	mA
			B-15	Com.		55	85	mA
I _{CC2}			B-15	Ind.		55	95	mA
			BQ-10	Com.		40	55	mA
			BQL-15	Com.		20	35	mA
			BQL-15	Ind.		20	40	mA
I _{OS} ⁽¹⁾	Output Short Circuit Current	V _{OUT} = 0.5 V	V _{OUT} = 0.5 V				-130	mA
V _{IL}	Input Low Voltage				-0.5		0.8	V
V _{IH}	Input High Voltage				2.0		V _{CC} +0.75	V
V _{OL}	Output High Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{CC} = \text{Min}$	I _{OL} = -24 mA Com., Ind.				0.5	V
V _{OH}	Output High Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{CC} = \text{Min}$	I _{OH} = -4.0 mA		2.4			V

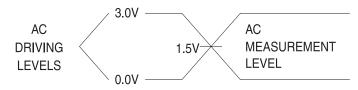
Note: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.

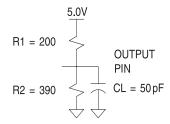
4.2 AC Waveforms⁽¹⁾

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V 3.0V, unless otherwise specified.

4.3 AC Characteristics⁽¹⁾

			-1	10	-15		
Symbol	Parameter		Min	Max	Min	Max	Units
t _{PD}	Input or Feedback to Non-Registered Output	8 outputs switching	3	10	3	15	ns
t _{CF}	Clock to Feedback			6		8	ns
t _{co}	Clock to Output		2	7	2	10	ns
t _S	Input or Feedback Setup Time				12		ns
t _H	Hold Time		0		0		ns
t _P	Clock Period		12		16		ns
t _W	Clock Width	6		8		ns	
	External Feedback 1/(t _S + t _{CO})			68		45	MHz
f _{MAX}	Internal Feedback 1/(t _S + t _{CF})			74		50	MHz
	No Feedback 1/(t _P)			83		62	MHz
t _{EA}	Input to Output Enable — Product Term			10	3	15	ns
t _{ER}	Input to Output Disable — Product Term			10	2	15	ns
t _{PZX}	OE pin to Output Enable			10	2	15	ns
t _{PXZ}	OE pin to Output Disable	1.5	10	1.5	15	ns	


Note: 1. See ordering information for valid part numbers and speed grades.


4.4 Input Test Waveforms

4.4.1 Input Test Waveforms and Measurement Levels

 $t_{\rm R},\,t_{\rm F}<5$ ns (10% to 90%)

4.4.2 Output Test Loads (Commercial)

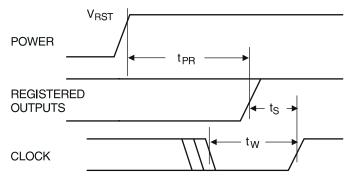
 \mathbf{C}_{L} includes Test fixture and Probe capacitance

4.5 Pin Capacitance

Table 4-1. Pin Capacitance (f = 1 MHz, T = $25^{\circ}C^{(1)}$)

	Тур	Max	Units	Conditions
C _{IN}	5	8	pF	$V_{IN} = 0V$
C _{OUT}	6	8	pF	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.


4.6 Power-up Reset

The registers in the ATF16V8Bs are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing V_{RST} , all registers will be reset to the low state. As a result, the registered output state will always be high on power-up.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

- 1. The V_{CC} rise must be monotonic,
- 2. After reset occurs, all input and feedback setup times must be met before driving the clock pin high, and
- 3. The clock must remain stable during t_{PR}.

Figure 4-1. Power-up Reset Waveforms

Table 4-2. Power-up Reset Parameters

Parameter	Description	Тур	Max	Units
t _{PR}	Power-up Reset Time	600	1,000	ns
V _{RST}	Power-up Reset Voltage	3.8	4.5	V

4.7 Preload of Registered Outputs

The ATF16V8B's registers are provided with circuitry to allow loading of each register with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A JEDEC file with preload is generated when a source file with vectors is compiled. Once downloaded, the JEDEC file preload sequence will be done automatically by most of the approved programmers after the programming.

5. Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATF16V8B fuse patterns. Once programmed, fuse verify and preload are inhibited. However, the 64-bit User Signature remains accessible.

The security fuse should be programmed last, as its effect is immediate.

14. ATF16V8BQ/BQL Ordering Information

14.1 ATF16V8BQ and ATF16V8BQL Ordering Information

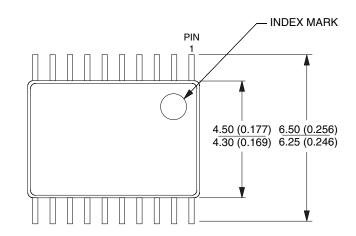
t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
			ATF16V8BQ-10JC	20J	
10	7.5	7	ATF16V8BQ-10PC	20P3	Commercial
10	7.5	/	ATF16V8BQ-10SC	20S	(0°C to 70°C)
			ATF16V8BQ-10XC	20X	
			ATF16V8BQL-15JC	20J	
15	12	10	ATF16V8BQL-15PC	20P3	Commercial
15	12	10	ATF16V8BQL-15SC	20S	(0°C to 70°C)
			ATF16V8BQL-15XC	20X	
			ATF16V8BQL-15JI	20J	
			ATF16V8BQL-15PI	20P3	Industrial
			ATF16V8BQL-15SI	20S	(-40°C to 85°C)
			ATF16V8BQL-15XI	20X	

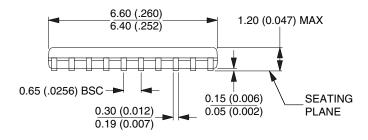
Note: The last time buy date is Sept. 30, 2005 for shaded parts.

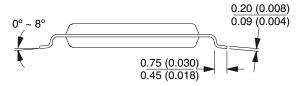
14.2 ATF16V8BQ and ATF16V8BQL Green Package Options (Pb/Halide-free/RoHS Compliant)

t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
		10 10	ATF16V8BQL-15JU	20J	
15	10		ATF16V8BQL-15PU	20P3	Industrial
15	12 10	12 10	ATF16V8BQL-15SU	20S	(-40°C to 85°C)
			ATF16V8BQL-15XU	20X	

14.3 Using "C" Product for Industrial


To use commercial product for Industrial temperature ranges, down-grade one speed grade from the "I" to the "C" device (7 ns "C" = 10 ns "I") and de-rate power by 30%.


	Package Type
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)
20P3	20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
20\$	20-lead, 0.300" Wide, Plastic Gull-Wing Small Outline (SOIC)
20X	20-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline (TSSOP)



15.4 20X - TSSOP

Dimensions in Millimeters and (Inches). Controlling dimension: Millimeters. JEDEC Standard MO-153 AC

TITLE

20X, (Formerly 20T), 20-lead, 4.4 mm Body Width, Plastic Thin Shrink Small Outline Package (TSSOP)

DRAWING NO.

20X