

Glass MELF Switching Diode

Qualified per **MIL-PRF-19500/116**

Qualified Levels:
JAN, JANTX, and
JANTXV

DESCRIPTION

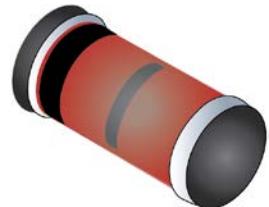
This popular 1N914UR JEDEC registered switching/signal diode features internal metallurgical bonded construction for military grade products per MIL-PRF-19500/116. Previously listed as a CDLL914 this small low capacitance diode, with very fast switching speeds, is hermetically sealed and bonded into a double-plug DO-213AA package. It may be used in a variety of very high speed applications including switchers, detectors, transient OR'ing, logic arrays, blocking, as well as low-capacitance steering diodes, etc. Microsemi also offers a variety of other switching/signal diodes.

Important: For the latest information, visit our website <http://www.microsemi.com>.

FEATURES

- Surface mount equivalent of popular JEDEC registered 1N914 number.
- Hermetically sealed glass construction.
- Metallurgically bonded.
- Double plug construction.
- Very low capacitance.
- Very fast switching speeds with minimal reverse recovery times.
- JAN, JANTX, and JANTXV qualification is available per MIL-PRF-19500/116.
(See [part nomenclature](#) for all available options.)
- RoHS compliant version available (commercial grade only).

APPLICATIONS / BENEFITS


- High frequency data lines.
- Small size for high density mounting using the surface mount method (see package illustration).
- RS-232 & RS-422 interface networks.
- Ethernet 10 Base T.
- Low-capacitance steering diodes.
- LAN.
- Computers.

MAXIMUM RATINGS @ 25 °C

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J & T _{STG}	-65 to +175	°C
Thermal Resistance Junction-to-Ambient ⁽¹⁾	R _{θJA}	325	°C/W
Thermal Resistance Junction-to-Endcap ⁽²⁾	R _{θJEC}	100	°C/W
Maximum Breakdown Voltage	V _(BR)	100	V
Working Peak Reverse Voltage	V _{RWM}	75	V
Average Rectified Current @ T _A = 75 °C ⁽³⁾	I _O	200	mA
Non-Repetitive Sinusoidal Surge Current (tp = 8.3 ms)	I _{FSM}	2	A (pk)

NOTES:

1. T_A = +75°C on printed circuit board (PCB), PCB = FR4 -.0625 inch (1.59 mm) 1-layer 1-Oz Cu, horizontal, in still air; pads = .061 inch (1.55 mm) x.105 inch (2.67 mm); R_{θJA} with a defined PCB thermal resistance condition included, is measured at I_O = 200 mA dc.
2. See [Figure 2](#) for thermal impedance curves.
3. See [Figure 1](#) for derating.

**DO-213AA
Package**

Also available in:

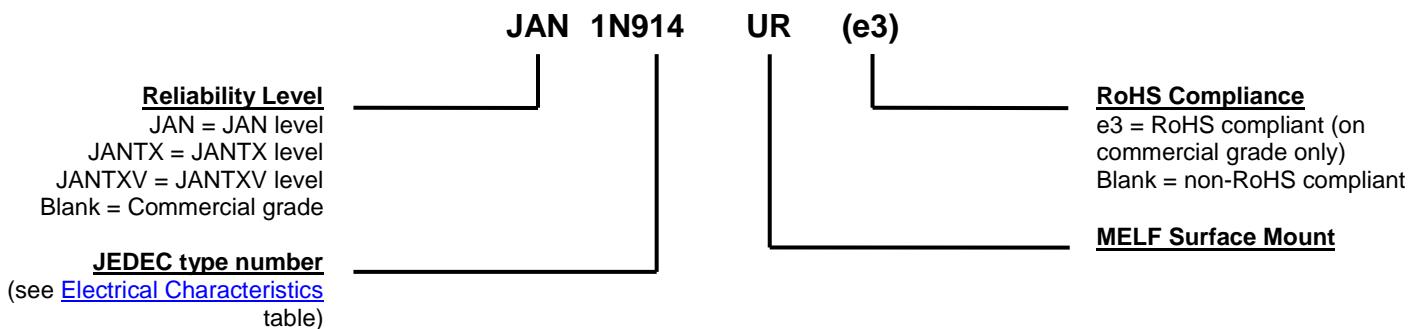
DO-35 package
(axial-leaded)
 [1N914](#)

MSC – Lawrence

6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600
Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298


Website:

www.microsemi.com

MECHANICAL and PACKAGING

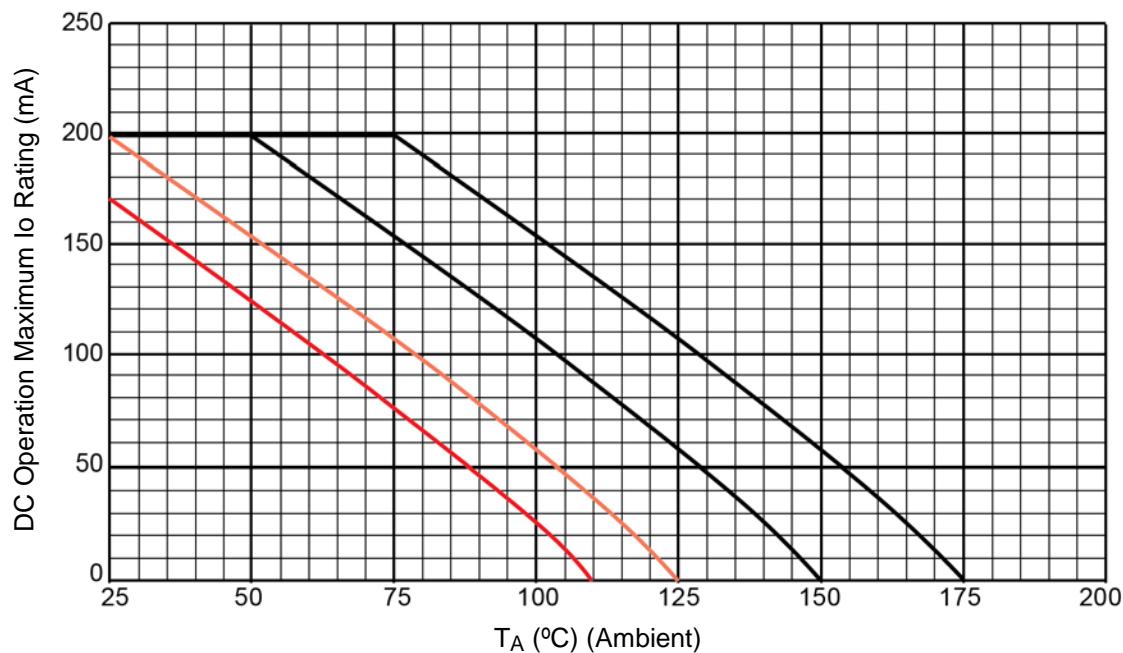
- CASE: Hermetically sealed glass case package.
- TERMINALS: Tin/lead plated or RoHS compliant matte-tin (on commercial grade only) over copper clad steel. Solderable per MIL-STD-750, method 2026.
- POLARITY: Cathode end is banded.
- MOUNTING: The axial coefficient of expansion (COE) of this device is approximately +6PPM/°C. The COE of the mounting surface system should be selected to provide a suitable match with this device.
- MARKING: Part number.
- TAPE & REEL option: Standard per EIA-296. Consult factory for quantities.
- WEIGHT: 0.2 grams.
- See [Package Dimensions](#) on last page.

PART NOMENCLATURE

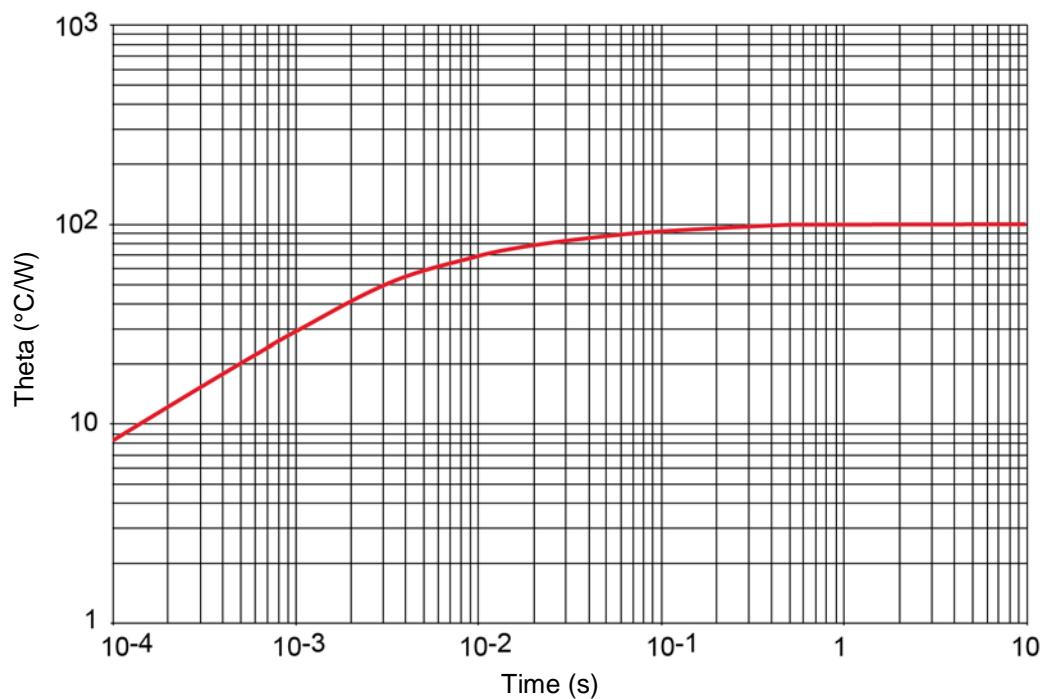
SYMBOLS & DEFINITIONS

Symbol	Definition
I_R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.
I_o	Average Rectified Forward Current: The output current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.
t_{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.
V_F	Forward Voltage: The forward voltage the device will exhibit at a specified current (typically shown as maximum value).
V_R	Reverse Voltage: The reverse voltage dc value, no alternating component.
V_{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B). Also sometimes known as PIV.

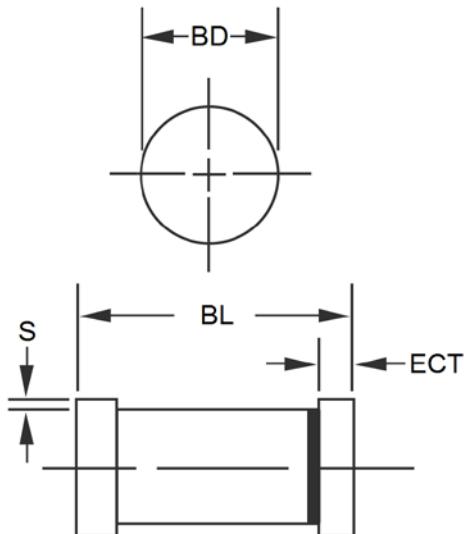
ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted


FORWARD VOLTAGE V_{F1} @ $I_F=10$ mA	FORWARD VOLTAGE V_{F2} @ $I_F=50$ mA	REVERSE RECOVERY TIME t_{rr} (Note 1)	FORWARD RECOVERY TIME t_{fr} (Note 2)	REVERSE CURRENT I_{R1} @ 20 V	REVERSE CURRENT I_{R2} @ 75 V	REVERSE CURRENT I_{R3} @ 20 V $T_A=150^\circ C$	REVERSE CURRENT I_{R4} @ 75 V $T_A=150^\circ C$	CAPACITANCE C (Note 3)	CAPACITANCE C (Note 4)
V	V	ns	ns	nA	μA	μA	μA	pF	pF
0.8	1.2	5	20	25	0.5	35	75	4.0	2.8

NOTE 1: $I_F = I_R = 10$ mA, $R_L = 100$ Ohms.

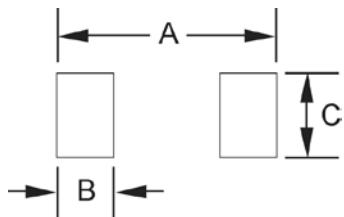

NOTE 2: $I_F = 50$ mA.

NOTE 3: $V_R = 0$ V, $f = 1$ MHz, $V_{SIG} = 50$ mV (pk to pk).


NOTE 4: $V_R = 1.5$ V, $f = 1$ MHz, $V_{SIG} = 50$ mV (pk to pk).

GRAPHS

FIGURE 1 – Temperature – Current Derating


FIGURE 2 – Thermal Impedance

PACKAGE DIMENSIONS

DIM	INCH		MILLIMETERS	
	MIN	MAX	MIN	MAX
BD	0.063	0.067	1.60	1.70
BL	0.130	0.146	3.30	3.71
ECT	0.016	0.022	0.41	0.56
S	.001 min		0.03 min	

NOTES:

1. Dimensions are in inches. Millimeters are given for general information only.
2. Dimensions are pre-solder dip.
3. Referencing to dimension S, minimum clearance of glass body to mounting surface on all orientations.
4. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

PAD LAYOUT

	INCH	mm
A	.200	5.08
B	.055	1.40
C	.080	2.03