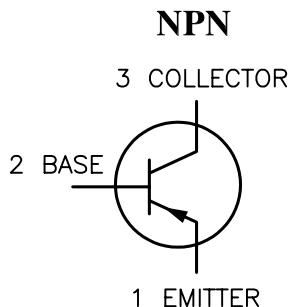
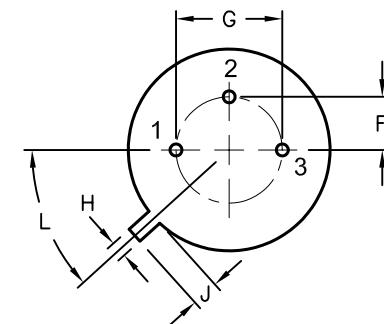
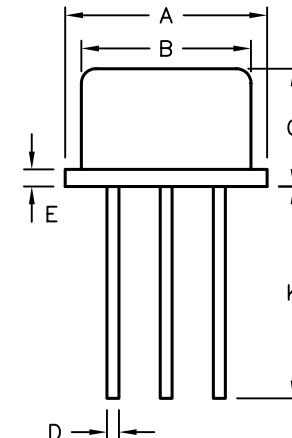
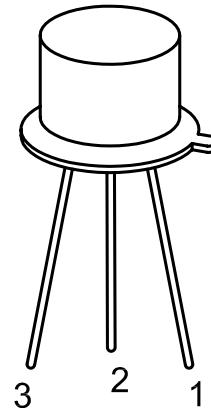


DCP #	REV	DESCRIPTION	DRAWN	DATE	CHECKD	DATE	APPRVD	DATE
1885	A	RELEASED	BYF	02/04/06	HO	2/6/06	JWM	2/6/06




Description:

A silicon NPN transistor in a TO-39 case intended for high speed switching applications.


Absolute Maximum Ratings:

- Collector–Base Voltage, $V_{CBO} = 75V$
- Collector–Emitter Voltage, $V_{CEO} = 40V$
- Emitter–Base Voltage, $V_{EBO} = 6V$
- Continuous Collector Current, $I_C = 800mA$
- Total Device Dissipation ($T_C = +25^\circ C$), $P_D = 1.2W$
Derate above $25^\circ C = 6.85mW/^\circ C$
- Total Device Dissipation ($T_A = +25^\circ C$), $P_D = 400mW$
Derate above $25^\circ C = 2.28mW/^\circ C$
- Operating Junction Temperature Range, $T_J = -65^\circ$ to $+200^\circ C$
- Storage Temperature Range, $T_{stg} = -65^\circ$ to $+200^\circ C$

Dim	Min	Max
A	8.50	9.39
B	7.74	8.50
C	6.09	6.60
D	0.40	0.53
E	–	0.88
F	2.41	2.66
G	4.82	5.33
H	0.71	0.86
J	0.73	0.86
K	12.70	–
L	42°	48°

STYLE 1
PIN 1. Emitter
2. Base
3. Collector

DISCLAIMER:
ALL STATEMENTS AND TECHNICAL INFORMATION CONTAINED
HEREIN ARE BASED UPON INFORMATION AND/OR TESTS WE
BELIEVE TO BE ACCURATE AND RELIABLE. SINCE
CONDITIONS OF USE ARE BEYOND OUR CONTROL, THE
USER SHALL DETERMINE THE SUITABILITY OF THE PRODUCT
FOR THE INTENDED USE AND ASSUME ALL RISK AND
LIABILITY WHATSOEVER IN CONNECTION THEREWITH.

TOLERANCES:
UNLESS OTHERWISE
SPECIFIED,
DIMENSIONS ARE
FOR REFERENCE
PURPOSES ONLY.

DRAWN BY:
BASAM YOUSIF 02/04/06
CHECKED BY:
HISHAM ODISH 2/6/06
APPROVED BY:
JEEF MCVICKER 2/6/06

DRAWING TITLE:
Power Transistor, Silicon TO-39, NPN
SIZE DWG. NO. ELECTRONIC FILE
A 2N2218A 35C0688.DWG **REV** **A**
SCALE: NTS U.O.M.: MILLIMETERS SHEET: 1 OF 2

Electrical Characteristics: ($T_A = +25^\circ\text{C}$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Max	Unit
OFF Characteristics					
Collector-Emitter Breakdown Voltage	$V_{(\text{BR})\text{CEO}}$	$I_C = 10\text{mA}, I_B = 0$	40	—	V
Collector-Base Breakdown Voltage	$V_{(\text{BR})\text{CBO}}$	$I_C = 10\mu\text{A}, I_E = 0$	75	—	V
Emitter-Base Breakdown Voltage	$V_{(\text{BR})\text{EBO}}$	$I_E = 10\mu\text{A}, I_C = 0$	6	—	V
Collector Cutoff Current	I_{CBO}	$V_{\text{CE}} = 60\text{V}, I_E = 0$	—	0.01	μA
		$V_{\text{CE}} = 60\text{V}, I_E = 0, T_A = +150^\circ\text{C}$	—	10	μA
	I_{CEX}	$V_{\text{CE}} = 60\text{V}, V_{\text{EB}(\text{off})} = 3\text{V}$	—	10	nA
Emitter Cutoff Current	I_{EBO}	$V_{\text{EB}} = 3\text{V}, I_C = 0$	—	10	nA
Base Cutoff Current	I_{BL}	$V_{\text{CE}} = 60\text{V}, V_{\text{EB}(\text{off})} = 3\text{V}$	—	20	nA

ON Characteristics

DC Current Gain	h_{FE}	$I_C = 0.1\text{mA}, V_{\text{CE}} = 10\text{V}$	20	—	—
		$I_C = 1\text{mA}, V_{\text{CE}} = 10\text{V}$	25	—	—
		$I_C = 10\text{mA}, V_{\text{CE}} = 10\text{V}$	35	—	—
		$I_C = 10\text{mA}, V_{\text{CE}} = 10\text{V}, T_A = -55^\circ\text{C}$	15	—	—
		$I_C = 150\text{mA}, V_{\text{CE}} = 10\text{V}$ (Note 1)	40	120	—
		$I_C = 150\text{mA}, V_{\text{CE}} = 1\text{V}$ (Note 1)	20	—	—
		$I_C = 500\text{mA}, V_{\text{CE}} = 10\text{V}$ (Note 1)	25	—	—
Collector-Emitter Saturation Voltage (Note 1)	$V_{\text{CE}(\text{sat})}$	$I_C = 150\text{mA}, I_B = 5\text{mA}$	—	0.3	V
Base-Emitter Saturation Voltage (Note 1)	$V_{\text{BE}(\text{sat})}$	$I_C = 500\text{mA}, I_B = 50\text{mA}$	—	1	V

Small-Signal Characteristics

Current Gain-Bandwidth Product (Note 2)	f_T	$I_C = 20\text{mA}, V_{\text{CE}} = 20\text{V}, f = 100\text{MHz}$, (Note 2)	250	—	MHz
Output Capacitance	C_{obo}	$V_{\text{CB}} = 10\text{V}, I_E = 0, f = 100\text{kHz}$	—	8	pF
Input Capacitance	C_{ibo}	$V_{\text{EB}} = 0.5\text{V}, I_C = 0, f = 100\text{kHz}$	—	25	pF
Input Impedance	h_{ie}	$I_C = 1\text{mA}, V_{\text{CE}} = 10\text{V}, f = 1\text{kHz}$	1	3.5	kOhm
		$I_C = 10\text{mA}, V_{\text{CE}} = 10\text{V}, f = 1\text{kHz}$	0.2	1	kOhm
Voltage Feedback Ratio	H_{re}	$I_C = 1\text{mA}, V_{\text{CE}} = 10\text{V}, f = 1\text{kHz}$	—	5	$\times 10^{-4}$
		$I_C = 10\text{mA}, V_{\text{CE}} = 10\text{V}, f = 1\text{kHz}$	—	2.5	$\times 10^{-4}$
OUTPUT ADMITTANCE	h_{oe}	$I_C = 1\text{mA}, V_{\text{CE}} = 10\text{V}, f = 1\text{kHz}$	3	15	μmhos
		$I_C = 10\text{mA}, V_{\text{CE}} = 10\text{V}, f = 1\text{kHz}$	10	100	μmhos
Collector-Base Time Constant	$rb' C_C$	$I_E = 20\text{mA}, V_{\text{CB}} = 20\text{V}, f = 31.8\text{MHz}$	5	150	ps
Noise Figure	NF	$I_C = 100\mu\text{A}, V_{\text{CE}} = 10\text{V}, R_S = 1\text{k Ohm}, f = 1\text{MHz}$	—	4	dB
Real Part of Common-Emitter High Frequency Input Impedance	$\text{Re}(h_{\text{ie}})$	$I_C = 20\text{mA}, V_{\text{CE}} = 20\text{V}, f = 300\text{MHz}$	—	60	Ohm

Switching Characteristics

Delay Time	t_q	$V_{\text{CC}} = 30\text{V}, I_C = 150\text{mA}, V_{\text{BE}(\text{off})} = 0.5\text{V}, I_{B1} = 15\text{mA}$	—	10	ns
Rise Time	t_r		—	25	ns
Storage Time	t_s	$V_{\text{CC}} = 30\text{V}, I_C = 150\text{mA}, I_{B1} = I_{B2} = 15\text{mA}$	—	225	ns
Fall Time	t_f		—	60	ns
Active Region Time Constant	T_A	$I_C = 150\text{mA}, V_{\text{CE}} = 30\text{V}$	—	2.5	ns

Notes:

1. Pulse Test: Pulse Width $\leq 300\text{ms}$, Duty Cycle $\leq 2\%$.
2. f_T is defined as the frequency at which $|h_{\text{re}}|$ extrapolates to unity.

ALL RIGHTS RESERVED. NO PORTION OF THIS PUBLICATION, WHETHER IN WHOLE OR IN PART CAN BE REPRODUCED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPC TECHNOLOGY.

SPC-F004.DWG

DOC. NO. SPC-F004 * Effective: 7/8/02 * DCP No: 1398

SIZE	DWG. NO.	ELECTRONIC FILE	REV
A	2N2218A	35C0688.DWG	A
SCALE: NTS	U.O.M.: Millimeters	SHEET: 2 OF 2	