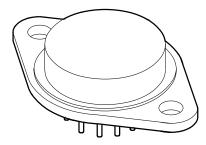


HIGH SPEED, WIDEBAND OPERATIONAL AMPLIFIER

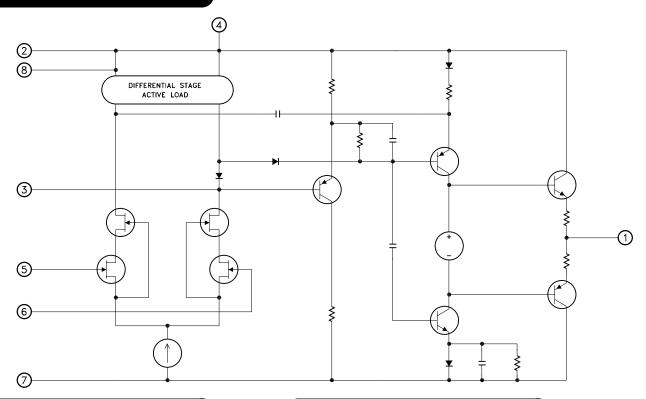
3554


M.S.KENNEDY CORP.

4707 Dey Road Liverpool, N.Y. 13088

(315) 701-6751

FEATURES: MIL-PRF-38534 QUALIFIED


- · Stable at Low Gain
- Fast Slew Rate 1200V/µs Typical
- · Gain Bandwidth Product 1200 MHz Typical
- Low Quiescent Current ± 14.0 mA Typical
- · Low Offset 2 mV Maximum
- Drop In Replacement for OPA 3554 and TP 3554
- High Output Current ± 100mA Minimum

DESCRIPTION:

The MSK 3554 is a pin compatible, low gain stable, drop-in replacement for the OPA 3554 and TP 3554. The MSK 3554 does not exhibit high frequency output oscillations like other versions of the 3554 when operated at closed loop gains of less than 55 V/V. The extremely low input bias current and input offset voltage ratings coupled with a high slew rate and wide bandwidth make the MSK 3554 an excellent choice for fast D/A converters, buffers, pulse amplifiers and other high speed op-amp applications. The MSK 3554 is packaged in an 8-pin TO-3 using thick film hybrid technology to obtain high reliability and compact size.

EQUIVALENT SCHEMATIC

TYPICAL APPLICATIONS

- Fast D/A Converters
- Pulse Amplifiers
- Video Instrumentation
- · Fast Buffer/Follower
- · Video Frequency Filters

PIN-OUT INFORMATION

- 1 Output
- 2 Positive Power Supply
- 3 Compensation
- 4 Balance

1

- 8 Balance
- 7 Negative Power Supply
- 6 Non-Inverting Input
- 5 Inverting Input

Rev. B 7/00

ABSOLUTE MAXIMUM RATINGS

± Vcc	Supply Voltage ± 18V	T_{ST}	Storage Temperature Range	-65°C to +150°C
louт	Peak Output Current ± 150mA	T_LD	Lead Temperature Range	300°C
V_{IN}	Differential Input Voltage ±25V		(10 Seconds)	
Tc	Case Operating Temperature	P_D	Power Dissipation	See Curve
	MSK 3554B55°C to +125°C	ΤJ	Junction Temperature	175°C
	MSK 3554 -40°C to +85°C			

ELECTRICAL SPECIFICATIONS

Poromotor	Test Conditions	Group A	MSK 3554B		MSK 3554				
		Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
STATIC									
Supply Voltage Range ③		-	±12	±15	±18	±12	±15	±18	V
Quiescent Current	VIN = OV	1	-	±14	± 20	-	±14	± 20	mA
	Av = -1v/v	2,3	-	-	±30	-	-	-	mA
Thermal Resistance ③	Junction to Case Output Devices	-	-	37	-	-	37	-	°C/W
INPUT									
Input Offset Voltage	Bal.Pins = N/C $VIN = 0V Av = -10v/v$	1	-	±0.5	±2.0	-	±0.5	±3.0	mV
Input Offset Voltage Drift	V _{IN} = OV	2,3	-	± 20	±50	-	± 20	-	μV/°C
Input Offset Adjust ③	RPOT = $20K\Omega$ To $+Vcc$ Av = $-1v/v$	1,2,3	Adjust to Zero Adjust to Zero		mV				
Input Bias Current 10	Vcm = 0V Either Input	1	-	±10	±50	-	± 20	± 100	pА
		2,3	-	±10	±50	-	-	-	nA
Input Offset Current	VcM=0V	1	-	±2.0	± 25	-	±2.0	±30	pА
		2,3	-	±2.0	±30	-	-	-	nA
Input Impedance ③	F = DC Differential	-	-	10 ¹¹	-	-	10 ¹¹	-	Ω
Power Supply Rejection Ratio		-	80	110	-	80	110	-	dB
Input Noise Density ③	F = 1KHz	-	-	15	-	-	15	-	nV√Hz
Input Noise Voltage ③	F=10Hz To 1MHz	-	-	10.0	-	-	10.0	-	μVrms
OUTPUT									
Output Voltage Swing	$RL = 100\Omega$	4	±10.5	±12	-	±10	±12	-	V
Output Current	TJ < 150°C	4	±100	±120	-	±100	±120	-	mA
Settling Time ② ③	0.1% 10V step	4	-	120	150	-	120	150	nS
Power Bandwidth ③	$R_L = 100\Omega \text{ Vo} = \pm 10 \text{V Cc} = 0$	4	16	19	-	15	19	-	MHz
Bandwidth (Small Signal) 3	Cc = 0	4	70	90	-	70	90	-	MHz
TRANSFER CHARACTERISTICS									
Slew Rate	Vout = ± 10 V RL = 100Ω Cc = 0	4	800	1200	-	750	1200	-	V/μS
Open Loop Voltage Gain ③ C	$c = 0 RL = 100\Omega F = 1KHz Vout = \pm 10V$	4	90	96	-	88	96	-	dB

2

NOTES:

- (1) Unless otherwise specified ±Vcc = ±15Vpc
 (2) AV = -1, measured in false summing junction circuit.
 (3) Devices shall be capable of meeting the parameter, but need not be tested. Typical parameters are for reference only.
 (4) Industrial grade devices shall be tested to subgroups 1 and 4 unless otherwise specified.
 (5) Military grade devices ('B' suffix) shall be 100% tested to subgroups 1,2,3 and 4.
 (6) Subgroup 5 and 6 testing available upon request.
 (7) Subgroup 1,4

 TA = Tc = +25°C

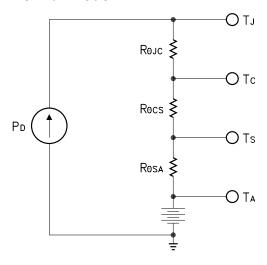
 Subgroup 2,5

 TA = Tc = +125°C

 Subgroup 3,6

 TA = Tc = -55°C

 (8) Measurement taken .5 second after application of power using automatic test equipment.


- Measurement taken .5 second after application of power using automatic test equipment.

APPLICATION NOTES

HEAT SINKING

Refer to the following thermal model and governing equations to determine appropriate heat sinking for your application.

Thermal Model:

Governing Equation:

$$T_J = P_D \times (R_{\theta JC} + R_{\theta CS} + R_{\theta SA}) + T_A$$

Where

T_J = Junction Temperature

PD = Total Power Dissipation

 $R_{\theta JC} = Junction to Case Thermal Resistance$

Recs = Case to Heat Sink Thermal Resistance

ResA = Heat Sink to Ambient Thermal Resistance

Tc = Case Temperature

TA = Ambient Temperature

Ts = Sink Temperature

Example:

This example demonstrates a worst case analysis for the opamp output stage. This occurs when the output voltage is 1/2 the power supply voltage. Under this condition, maximum power transfer occurs and the output is under maximum stress.

Conditions:

 $Vcc = \pm 16VDC$

 $Vo = \pm 8Vp$ Sine Wave, Freq. = 1KHZ

 $RL = 100\Omega$

For a worst case analysis we will treat the +8Vp sine wave as an $8\ VDC$ output voltage.

1.) Find Driver Power Dissipation

PD = (Vcc-Vo) (Vo/RL)

= $(16V-8V) (8V/100\Omega)$

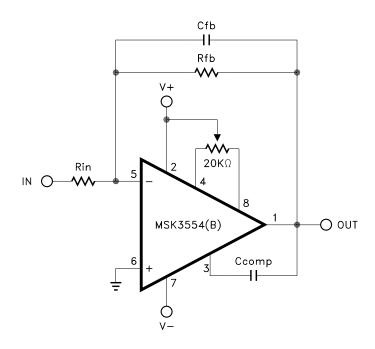
= .64W

2.) For conservative design, set $T_J = +125$ °C

3.) For this example, worst case $TA = +90^{\circ}C$

4.) R θ JC = 37 $^{\circ}$ C/W from MSK 3554B Data Sheet

5.) Recs = 0.15 °C/W for most thermal greases


6.) Rearrange governing equation to solve for Resa

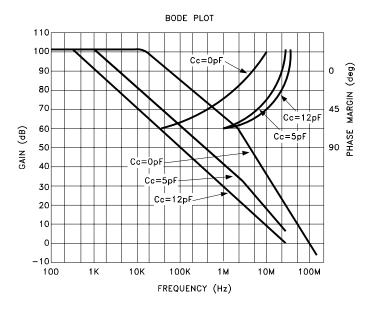
Resa =
$$((T_J - T_A)/P_D) - (R_{\theta}C) - (R_{\theta}CS)$$

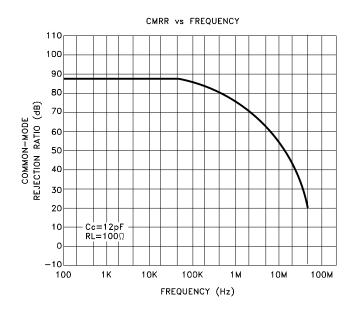
= $((125 ^{\circ}C - 90 ^{\circ}C) / .64W) - 37 ^{\circ}C/W - .15 ^{\circ}C/W$
= $54.7 - 37.15$
= $17.54 ^{\circ}C/W$

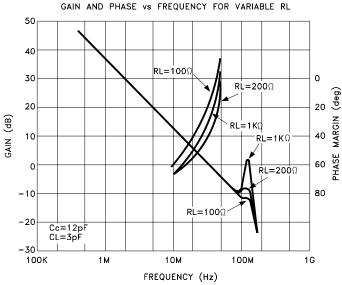
The heat sink in this example must have a thermal resistance of no more than 17.54°C/W to maintain a junction temperature of no more than $+125^{\circ}\text{C}$.

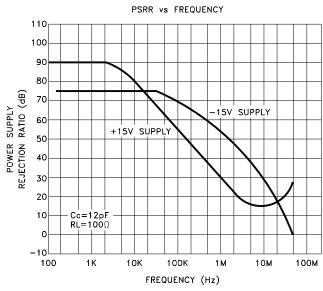
OFFSET NULL

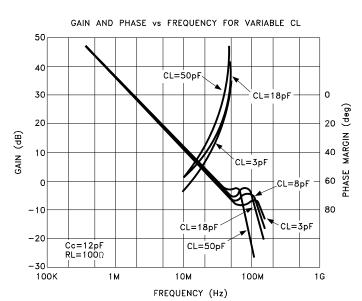
Typically, the MSK 3554(B) has an input offset voltage of less than $\pm 0.5 \text{mV}$. If it is desirable to adjust the offset closer to "zero", or to a value other than "zero", the circuit below is recommended. Rp should be a ten-turn $20 \text{K}\Omega$ potentiometer. Typical offset adjust is $\pm 20 \text{mV}$.

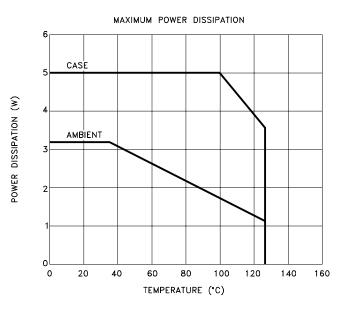


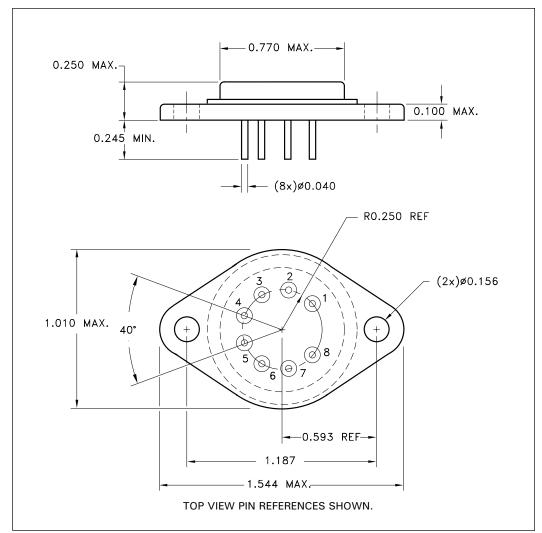

COMPENSATION


The compensation capacitor is connected between pins 1 and 3 and is used to optimize bandwidth and slew rate while maintaining circuit stability. The effect of compensation capacitance can be seen in the Bode Plot under the Typical Performance Curves. As closed loop gain increases, compensation capacitance can decrease and higher slew rates and wider bandwidths will be realized. See the component selection table for recommended values of input and feedback resistance as well as feedback capacitance and compensation capacitance.


COMPONENT SELECTION TABLE					
GAIN	Rin	Rfb	Cfb	Ccomp	
-1	5.6ΚΩ	5.6ΚΩ	2.0pF	10pF	
-10	560Ω	5.6ΚΩ	1.2pF	10pF	
-100	100Ω	10ΚΩ	0.0pF	0.0pF	
follower	Ω0	0Ω	OpF	12pF	


TYPICAL PERFORMANCE CURVES





4 Rev. B 7/00

ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED

ORDERING INFORMATION

Part Number	Screening Level			
MSK3554	Industrial			
MSK3554B	Military-Mil-PRF-38534			

M.S. Kennedy Corp.
4707 Dey Road, Liverpool, New York 13088
Phone (315) 701-6751
FAX (315) 701-6752
www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.

5 Rev. B 7/00