

MGP15N43CL, MGB15N43CL

Preferred Device

Ignition IGBT 15 Amps, 430 Volts N-Channel TO-220 and D2PAK

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over-Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

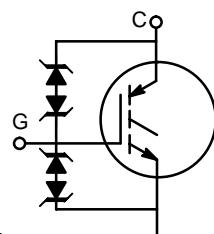
- Gate-Emitter ESD Protection
- Temperature Compensated Gate-Collector Voltage Clamp Limits Stress Applied to Load
- Integrated ESD Diode Protection
- Low Threshold Voltage to Interface Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

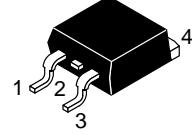
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CES}	460	V _{DC}
Collector-Gate Voltage	V_{CER}	460	V _{DC}
Gate-Emitter Voltage	V_{GE}	22	V _{DC}
Collector Current-Continuous @ $T_C = 25^\circ\text{C}$	I_C	15	A _{DC}
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D	136 1.0	Watts W $^\circ\text{C}$
Operating and Storage Temperature Range	T_J, T_{stg}	-55 to 175	°C

UNCLAMPED DRAIN-TO-SOURCE AVALANCHE CHARACTERISTICS ($T_J < 150^\circ\text{C}$)

Characteristic	Symbol	Value	Unit
Single Pulse Collector-to-Emitter Avalanche Energy $V_{CC} = 50\text{ V}$, $V_{GE} = 5\text{ V}$, $\text{P}_{kL} = 14.2\text{ A}$, $L = 3\text{ mH}$, Starting $T_J = 25^\circ\text{C}$	E_{AS}	300	mJ
$V_{CC} = 50\text{ V}$, $V_{GE} = 5\text{ V}$, $\text{P}_{kL} = 10\text{ A}$, $L = 3\text{ mH}$, Starting $T_J = 150^\circ\text{C}$		150	

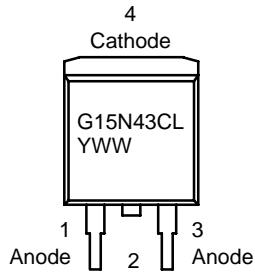



ON Semiconductor™


<http://onsemi.com>

**15 AMPERES
430 VOLTS (Clamped)
 $V_{CE(on)} = 1.8\text{ m}\Omega$**

N-Channel



TO-220AB
CASE 221A
STYLE 9

D2PAK
CASE 418B
STYLE 3

MARKING DIAGRAMS & PIN ASSIGNMENTS

G15N43CL = Device Code
Y = Year
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MGP15N43CL	TO-220	50 Units/Rail
MGB15N43CLT4	D2PAK	800 Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MGP15N43CL, MGB15N43CL

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.0	$^{\circ}\text{C}/\text{W}$
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	62.5	
D ² PAK	$R_{\theta JA}$	50	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T_L	275	$^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Symbol	Test Conditions	Min	Typ	Max	Unit
----------------	--------	-----------------	-----	-----	-----	------

OFF CHARACTERISTICS

Collector-Emitter Clamp Voltage	BV_{CES}	$I_C = 2 \text{ mA}$ $T_J = -40^{\circ}\text{C}$ to 175°C	400	430	460	V_{DC}
Zero Gate Voltage Collector Current	I_{CES}	$V_{\text{CE}} = 300 \text{ V}$, $V_{\text{GE}} = 0$, $T_J = 25^{\circ}\text{C}$	—	—	40	μA_{DC}
		$V_{\text{CE}} = 300 \text{ V}$, $V_{\text{GE}} = 0$, $T_J = 150^{\circ}\text{C}$	—	—	200	
Reverse Collector-Emitter Leakage Current	I_{ECS}	$V_{\text{CE}} = -24 \text{ V}$	—	—	1.0	mA
Gate-Emitter Clamp Voltage	BV_{GES}	$I_G = 5 \text{ mA}$	17	—	22	V_{DC}
Gate-Emitter Leakage Current	I_{GES}	$V_{\text{GE}} = 10 \text{ V}$	—	—	2.0	μA_{DC}

ON CHARACTERISTICS (Note 1.)

Gate Threshold Voltage	$V_{\text{GE}}(\text{th})$	$I_C = 1 \text{ mA}$ $V_{\text{GE}} = V_{\text{CE}}$	1.2	1.5	2.1	V_{DC}
Threshold Temperature Coefficient (Negative)	—	—	—	4.4	—	$\text{mV}/^{\circ}\text{C}$
Collector-to-Emitter On-Voltage	$V_{\text{CE}}(\text{on})$	$I_C = 6 \text{ A}$, $V_{\text{GE}} = 4 \text{ V}$	—	—	1.8	V_{DC}
Collector-to-Emitter On-Voltage	$V_{\text{CE}}(\text{on})$	$I_C = 10 \text{ A}$, $V_{\text{GE}} = 4.5 \text{ V}$, $T_J = 150^{\circ}\text{C}$	—	—	1.8	V_{DC}
Forward Transconductance	g_{fs}	$V_{\text{CE}} = 5 \text{ V}$, $I_C = 6 \text{ A}$	8.0	15	—	Mhos

DYNAMIC CHARACTERISTICS

Input Capacitance	C_{ISS}	$V_{\text{CC}} = 15 \text{ V}$	—	950	—	pF
Output Capacitance	C_{OSS}	$V_{\text{GE}} = 0 \text{ V}$	—	100	—	
Transfer Capacitance	C_{RSS}	$f = 1 \text{ MHz}$	—	8.0	—	

SWITCHING CHARACTERISTICS (Note 1.)

Turn-Off Delay Time	$t_{\text{d}}(\text{off})$	$V_{\text{CC}} = 300 \text{ V}$, $I_C = 10 \text{ A}$	—	14	—	μSec
Fall Time	t_f	$R_G = 1 \text{ k}\Omega$, $L = 300 \mu\text{H}$	—	7.0	—	
Turn-On Delay Time	$t_{\text{d}}(\text{on})$	$V_{\text{CC}} = 10 \text{ V}$, $I_C = 6.5 \text{ A}$	—	0.5	—	μSec
Rise Time	t_r	$R_G = 1 \text{ k}\Omega$, $R_L = 1 \Omega$	—	4.5	—	
Gate Charge	Q_T	$V_{\text{CC}} = 300 \text{ V}$	—	TBD	—	nC
	Q_1	$I_C = 15 \text{ A}$	—	TBD	—	
	Q_2	$V_{\text{GE}} = 5 \text{ V}$	—	TBD	—	

1. Pulse Test: Pulse Width $\leq 300 \mu\text{S}$, Duty Cycle $\leq 2\%$.

MGP15N43CL, MGB15N43CL

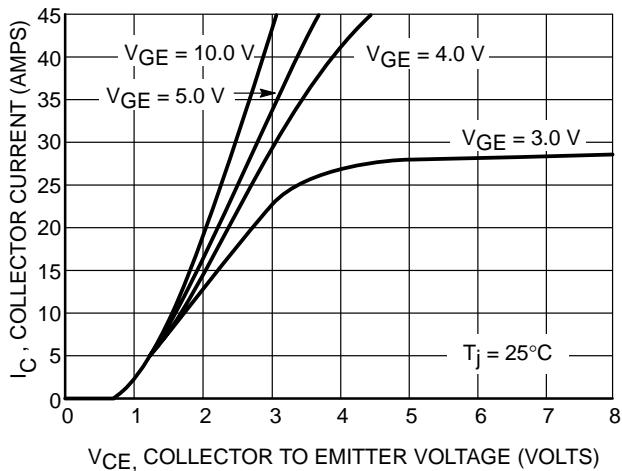


Figure 1. Output Characteristics

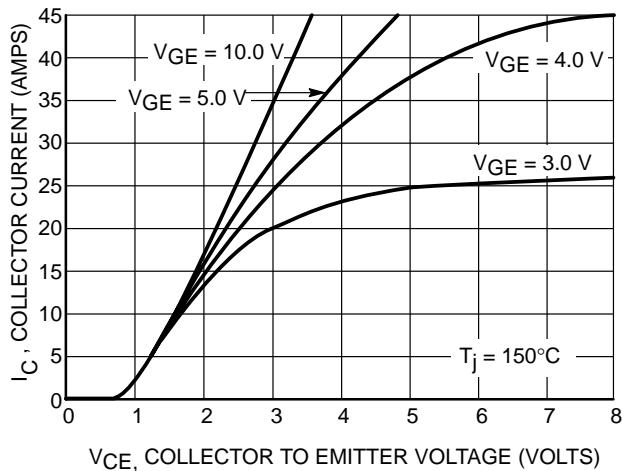


Figure 2. Output Characteristics

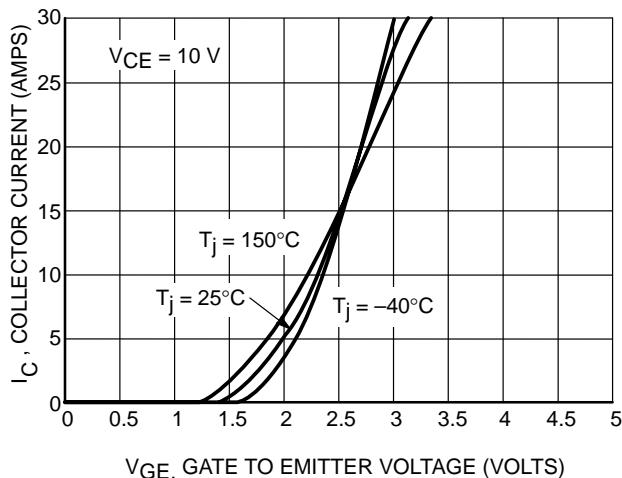


Figure 3. Transfer Characteristics

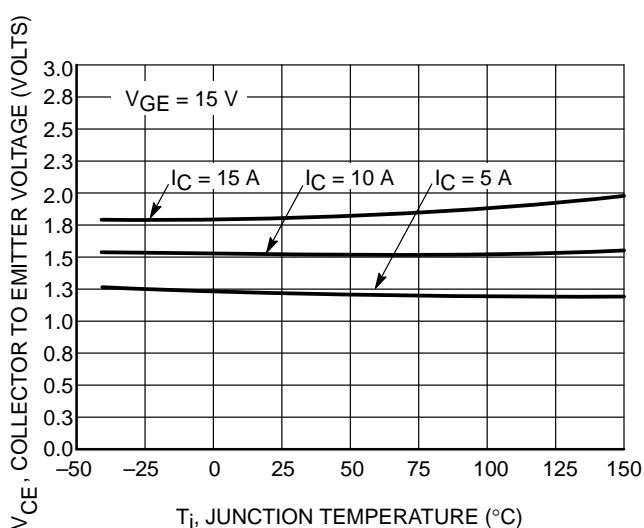


Figure 4. Collector-to-Emitter Saturation Voltage versus Junction Temperature

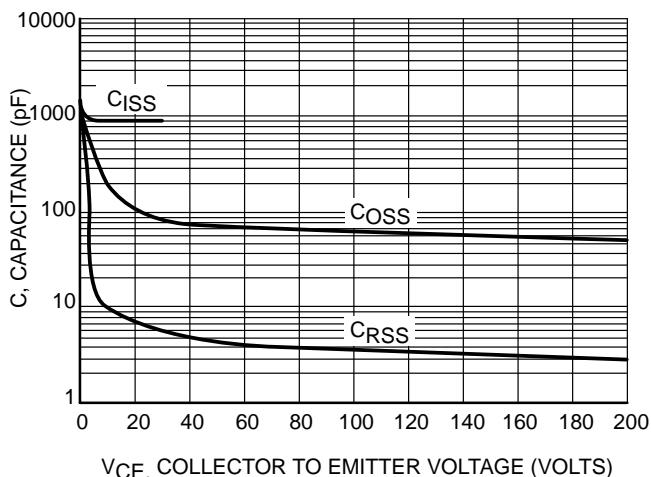


Figure 5. Capacitance Variation

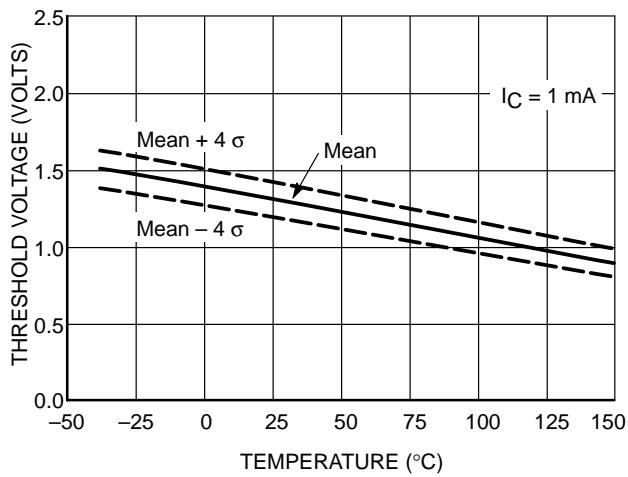


Figure 6. Threshold Voltage versus Temperature

MGP15N43CL, MGB15N43CL

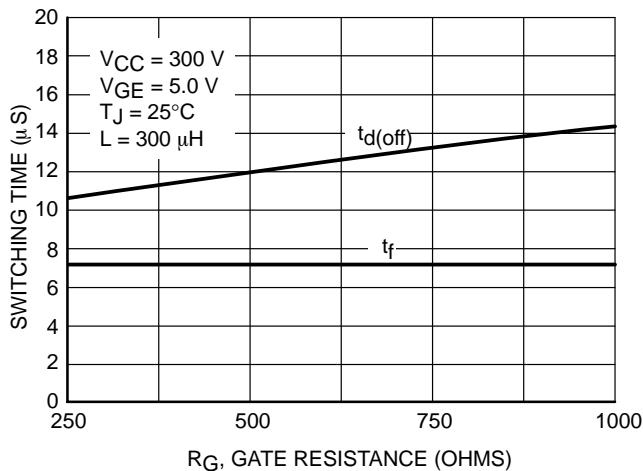


Figure 7. Switching Speed versus Gate Resistance

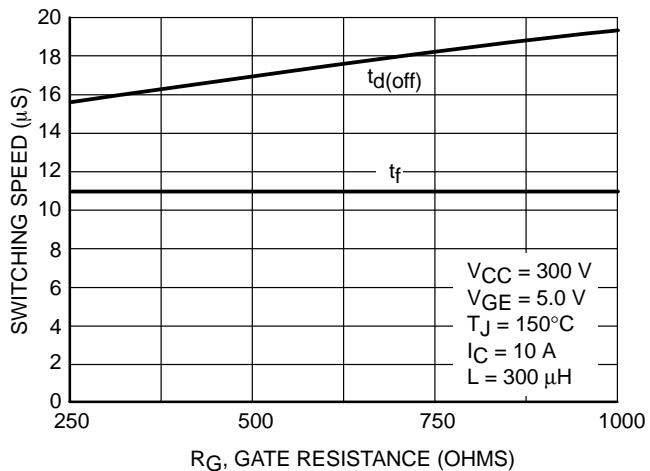


Figure 8. Switching Speed versus Gate Resistance

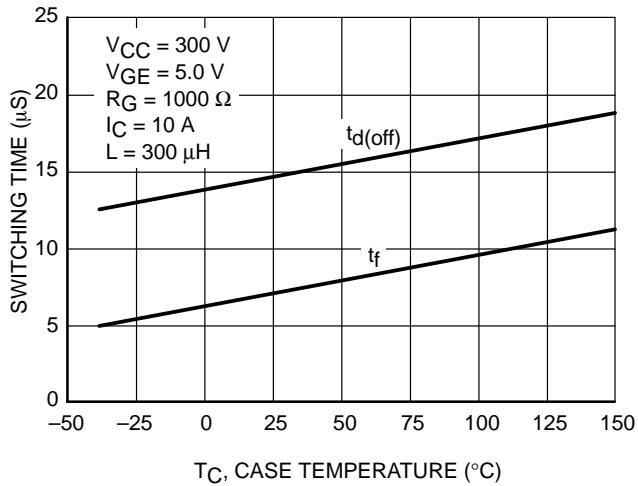


Figure 9. Switching Speed versus Case Temperature

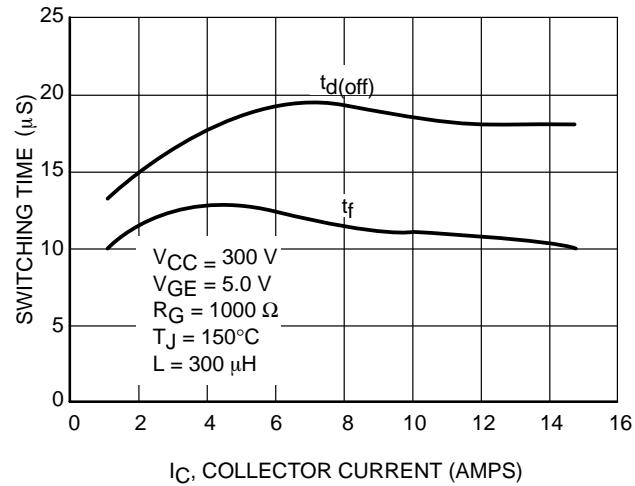


Figure 10. Total Switching Losses versus Collector Current

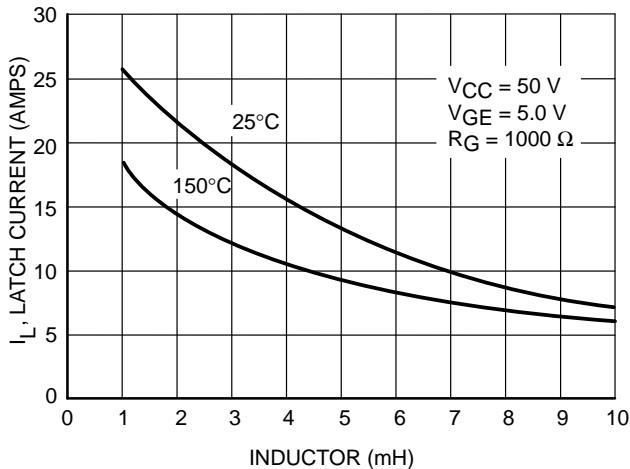


Figure 11. Latch Current versus Inductor (Typical)

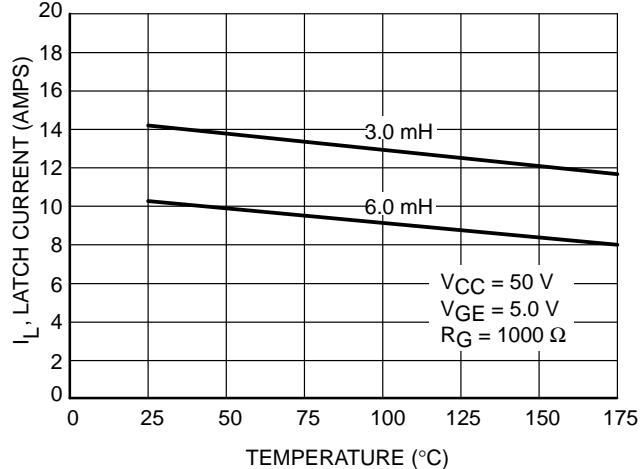
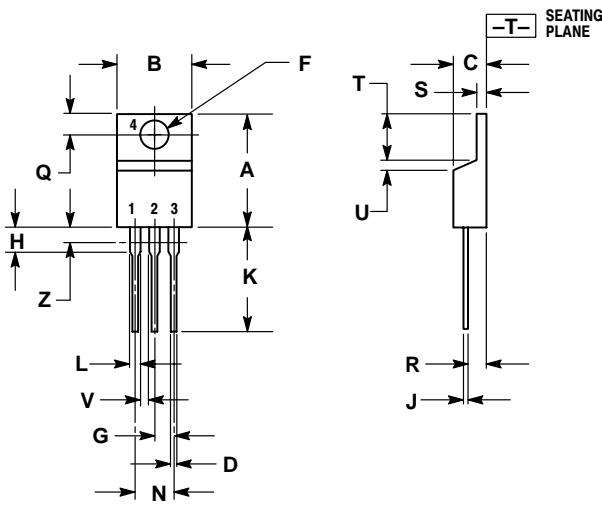



Figure 12. Latch Current versus Temperature (Typical)

MGP15N43CL, MGB15N43CL

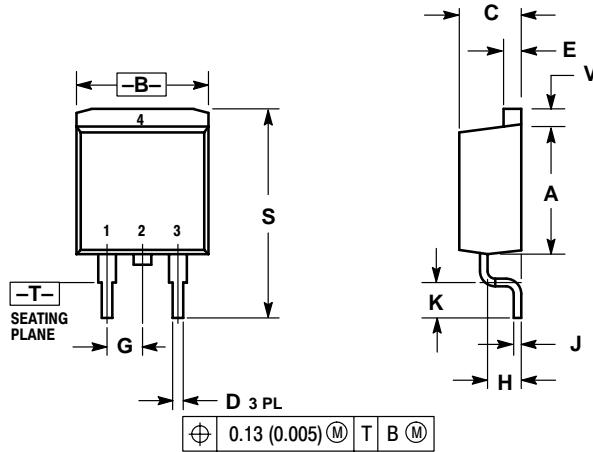
PACKAGE DIMENSIONS

TO-220 THREE-LEAD TO-220AB CASE 221A-09 ISSUE AA

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04


STYLE 9:

1. GATE
2. COLLECTOR
3. Emitter
4. COLLECTOR

MGP15N43CL, MGB15N43CL

PACKAGE DIMENSIONS

D2PAK
CASE 418B-03
ISSUE D

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.340	0.380	8.64	9.65
B	0.380	0.405	9.65	10.29
C	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
E	0.045	0.055	1.14	1.40
G	0.100 BSC		2.54 BSC	
H	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
S	0.575	0.625	14.60	15.88
V	0.045	0.055	1.14	1.40

STYLE 3:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. CATHODE

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET)
Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET)
Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)
Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access –
then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001-800-4422-3781
Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com

ON Semiconductor Website: <http://onsemi.com>

For additional information, please contact your local
Sales Representative.