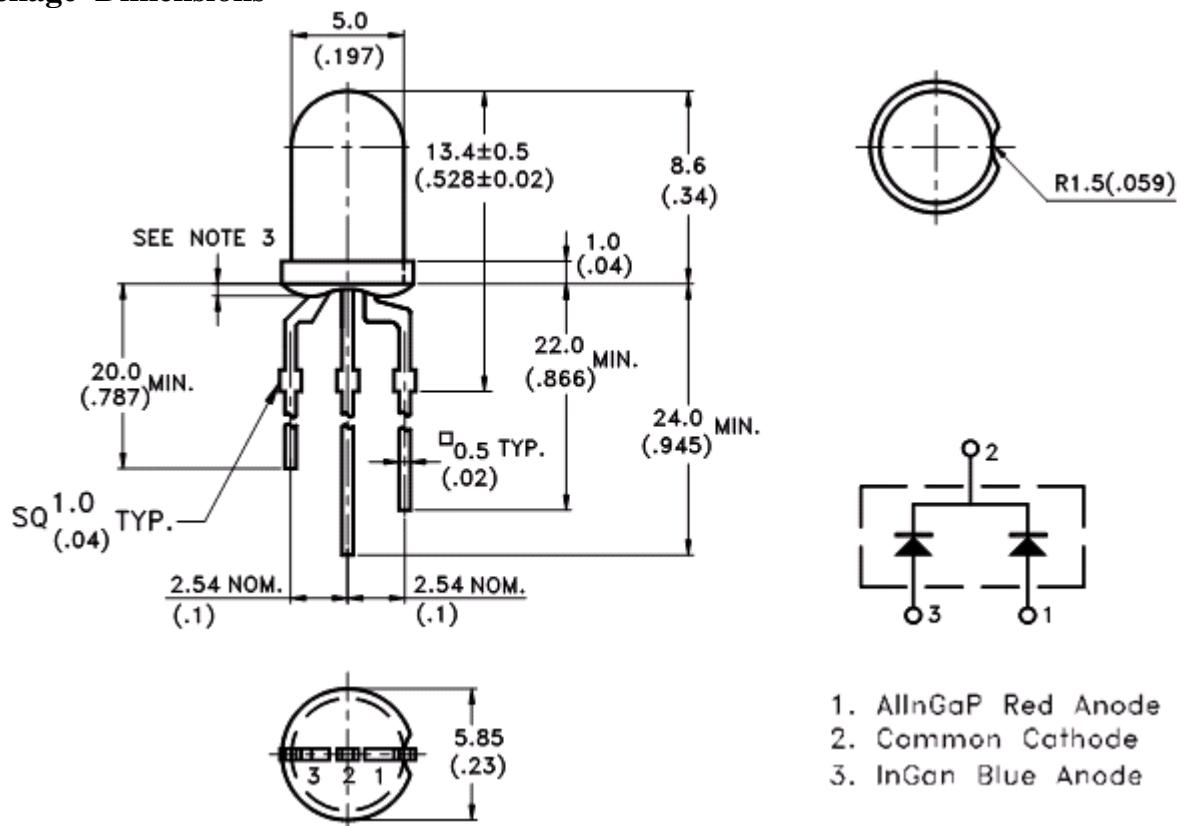


Through Hole Lamp Product Data Sheet LTL30ECBKRJS-042A

Spec No.: DS20-2007-0070

Effective Date: 05/24/2012

Revision: A


LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

Features

- * AlInGaP Red and InGaN Blue chips are matched for uniform light output.
- * T-1 3/4 type package.
- * Long life-solid state reliability.
- * Low power consumption.
- * Pb Free and RoHS compliant

Package Dimensions

Part No.	Lens	Source Color
LTL30ECBKRJS-042A	White Diffused	AlInGaP Red /InGaN Blue

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is ±0.25mm(.010") unless otherwise noted.
3. Protruded resin under flange is 1.0mm(.04") max.
4. Lead spacing is measured where the leads emerge from the package.
5. Specification is subject to change without notice.

LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Absolute Maximum Ratings at TA=25°C

Parameter	AllnGaP Red	InGan Blue	Unit
Power Dissipation	75	120	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	90	100	mA
Continuous Forward Current	30	30	mA
Derating Linear From 50°C ,30 °C	0.4	0.4	mA/°C
Operating Temperature Range	-55°C to + 100°C		
Storage Temperature Range	-55°C to + 100°C		
Lead Soldering Temperature [2.0 mm(.078") From Body]	260°C for 5 Seconds		

Electrical Optical Characteristics at TA=25°C

Parameter	Symbol	Color	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity	I _v	Red Blue	180 180	310 310		mcd	I _F = 20mA I _F = 20mA Note 1,4
Viewing Angle	2θ _{1/2}	Red Blue		25 25		deg	Note 2 (Fig.6)
Peak Emission	λ _p	Red Blue		639 468		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λ _d	Red Blue		631 470		nm	Note 3
Spectral Line Half-Width	Δλ	Red Blue		20 26		nm	
Forward Voltage	V _F	Red Blue		2.0 3.1	2.4 3.9	V	I _F = 20mA
Reverse Current	I _R	Red Blue			100	μA	V _R = 5V
Electrostatic Discharge Threshold	HBM				700	V	

Note: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve.

2. θ_{1/2} is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength, λ_d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
4. The I_v guarantee should be added ±15%.
5. Reverse voltage (VR) condition is applied for IR test only. The device is not designed reverse operation

Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

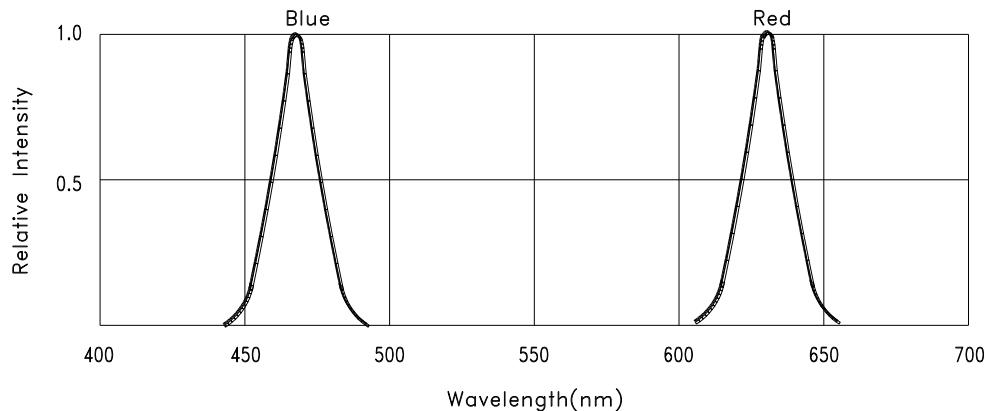


Fig.1 Relative Intensity vs. Wavelength

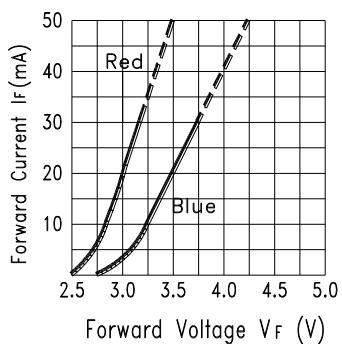


Fig.2 Forward Current vs. Forward Voltage

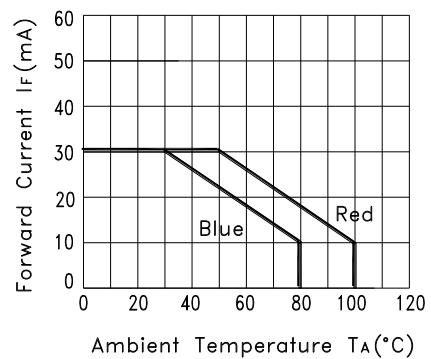


Fig.3 Forward Current Derating Curve

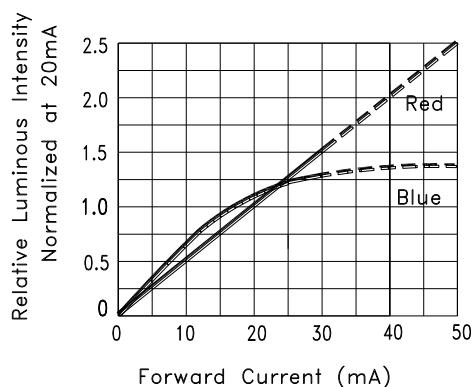


Fig.4 Relative Luminous Intensity vs. Forward Current

Fig.5 Spatial Distribution

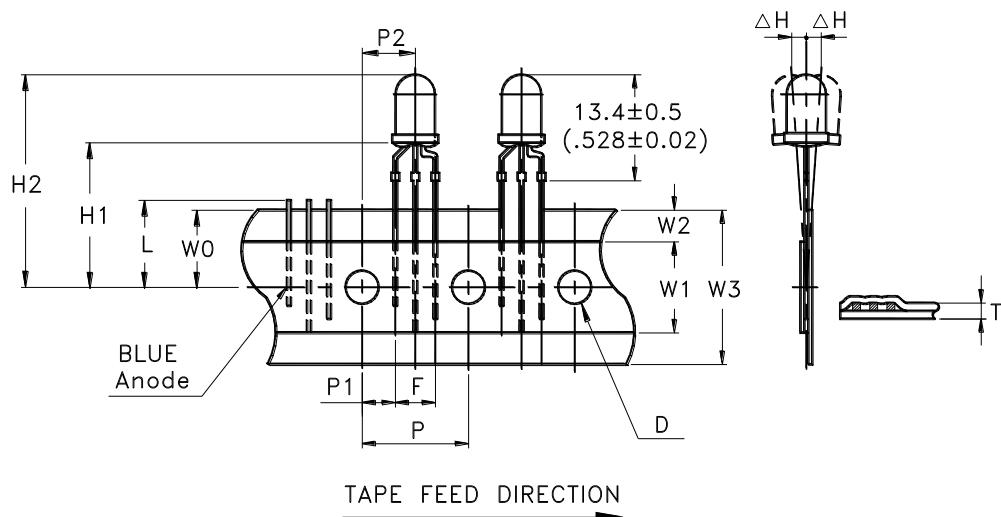
LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Bin Table Specifications

Luminous Intensity AllnGaP Red Unit : mcd @20mA		
Bin Code	Min.	Max.
H	180	240
J	240	310
K	310	400
L	400	520

Luminous Intensity InGan Blue Unit : mcd @20mA		
Bin Code	Min.	Max.
H	180	240
J	240	310
K	310	400
L	400	520

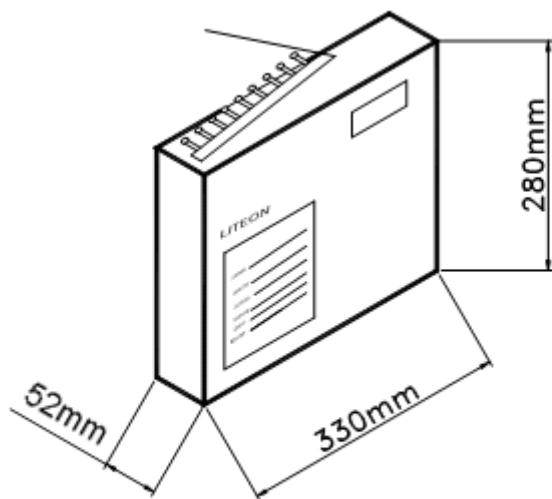

Note: Tolerance of each bin limit is $\pm 15\%$

Bin Code : X-X (Luminous Intensity BLUE – Luminous Intensity RED)

Features

- * Compatible with radial lead automatic insertion equipment.
- * Most radial lead plastic lead lamps available packaged in tape and folding.
- * 3 leads with 2.54mm (0.1") straight lead spacing available.
- * Folding packaging simplifies handling and testing.

Package Dimensions

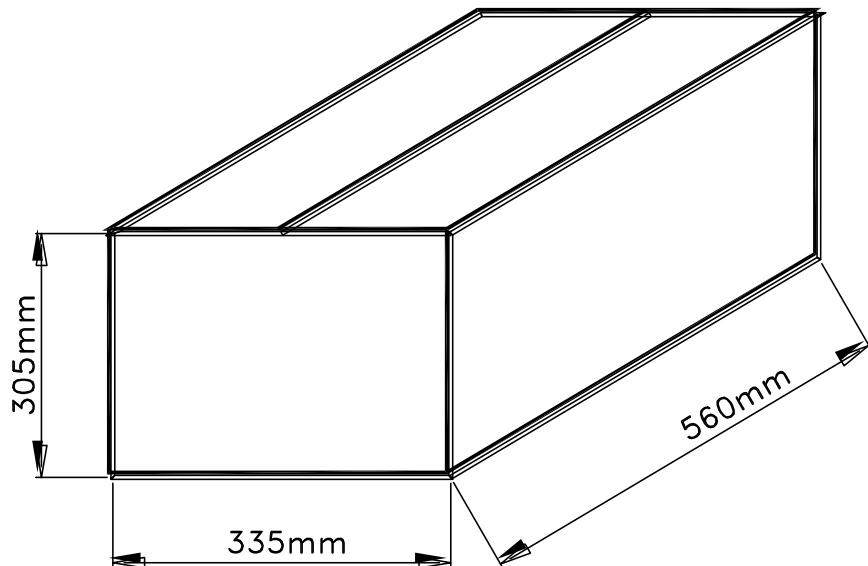


Item	Symbol	Specification			
		Minimum mm	Maximum inch	Minimum mm	Maximum inch
Tape Feed Hole Diameter	D	3.8	0.149	4.2	0.165
Component Lead Pitch	F	4.8	0.188	5.8	0.228
Front to Rear Deflection	ΔH	--	--	2.0	0.078
Feed Hole to Bottom of Component	H1	17.8	0.700	20.3	0.799
Feed Hole to Overall Component Height	H2	26.1	1.027	29.2	1.150
Lead Length after Component Height	L	W0		11.0	0.433
Feed Hole Pitch	P	12.4	0.488	13.0	0.511
Lead Location	P1	3.15	0.124	4.55	0.179
Center of Component Location	P2	5.05	0.198	7.65	0.301
Total Taped Thickness	T	--	--	0.90	0.035
Feed Hole Location	W0	8.5	0.334	9.75	0.384
Adhesive Tape Width	W1	12.5	0.492	13.5	0.531
Adhesive Tape Position	W2	0	0	3.0	0.118
Tape Width	W3	17.5	0.689	19.0	0.748

Property of Lite-On Only

Packing Spec

2000 pcs per inner carton



Tolerance: $\pm 5\text{mm}$

10 Inner cartons per outer carton

total 20000 pcs per outer carton

In every shipping lot, only the last pack will be non-full packing

CAUTIONS

1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

2. Storage

The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are used within three months.

For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant or in a dessicator with nitrogen ambient.

3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LEDs if necessary.

4. Lead Forming & Assembly

During lead forming, the leads should be bent at a point at least 3mm from the base of LEDlens.

Do not use the base of the lead frame as a fulcrum during forming.

Lead forming must be done before soldering, at normal temperature.

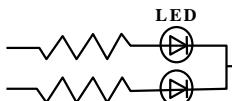
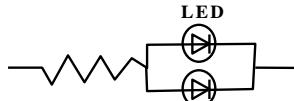
During assembly on PCB, use minimum clinch force possible to avoid excessive mechanical stress.

5. Soldering

When soldering, leave a minimum of 2mm clearance from the base of the lens to the soldering point.

Dipping the lens into the solder must be avoided.

Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.



Recommended soldering condition (for Lamp):

Soldering iron		Wave soldering	
Temperature	300°C Max.	Pre-heat	100°C Max.
Soldering time	3 sec. Max. (one time only)	Pre-heat time Solder wave Soldering time	60 sec. Max. 260°C Max. 5 sec. Max.

Note: Excessive soldering temperature and/or time might result in deformation of the LED lens or catastrophic failure of the LED. IR re-flow is not suitable process for through hole type LED lamp production.

6. Drive Method

An LED is a current operated device, In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application; it is recommended that a current limiting resistor be incorporated in the drive circuit. In series with each LED as shown in Circuit A below.

Circuit model A**Circuit model B**

(A) Recommended circuit.

(B) The brightness of each LED

might appear different due to the
differences in the I-V

8. Reliability Test

Classification	Test Item	Test Condition	Reference Standard
Endurance Test	Operation Life	Ta= Under Room Temperature As Per Data Sheet Maximum Rating *Test Time= 1000HRS (-24HRS,+72HRS)	MIL-STD-750D:1026 (1995) MIL-STD-883D:1005 (1991) JIS C 7021:B-1 (1982)
	High Temperature High Humidity Storage	Ta= $65 \pm 5^\circ\text{C}$ RH= 90 ~ 95% Test Time= 240HRS \pm 2HRS	MIL-STD-202F: 103B(1980) JIS C 7021 : B-11(1982)
	High Temperature High Humidity Reverse BIAS	Ta= $65 \pm 5^\circ\text{C}$ RH= 90 ~ 95% VR=5V Test Time = 500HRS (-24HRS, +48HRS)	JIS C 7021 : B-11(1982)
	High Temperature Storage	Ta= $105 \pm 5^\circ\text{C}$ *Test Time= 1000HRS (-24HRS,+72HRS)	MIL-STD-883D:1008 (1991) JIS C 7021:B-10 (1982)
	Low Temperature Storage	Ta= $-55 \pm 5^\circ\text{C}$ *Test Time=1000HRS (-24HRS,+72HRS)	JIS C 7021:B-12 (1982)
Environmental Test	Temperature Cycling	$105^\circ\text{C} \sim 25^\circ\text{C} \sim -55^\circ\text{C} \sim 25^\circ\text{C}$ 30mins 5mins 30mins 5mins 10 Cycles	MIL-STD-202F:107D (1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1010 (1991) JIS C 7021: A-4(1982)
	Thermal Shock	$105 \pm 5^\circ\text{C} \sim -55^\circ\text{C} \pm 5^\circ\text{C}$ 10mins 10mins 10 Cycles	MIL-STD-202F:107D(1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1011 (1991)
	Solder Resistance	T.sol = $260 \pm 5^\circ\text{C}$ Max. Dwell Time= 5 secs Max 3 times dip.	MIL-STD-202F:210A(1980) MIL-STD-750D:2031(1995) JIS C 7021: A-1(1982)
	Solderability	T. sol = $230 \pm 5^\circ\text{C}$ Dwell Time= 5 ± 1 secs	MIL-STD-202F:208D(1980) MIL-STD-750D:2026(1995) MIL-STD-883D:2003(1991) JIS C 7021: A-2(1982)

9. Others

The appearance and specifications of the product may be modified for improvement, without prior notice.