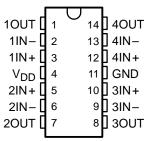
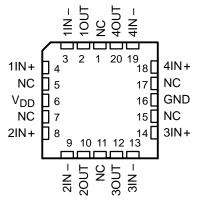
- Trimmed Offset Voltage:
 - TLC279 . . . 900 μ V Max at 25°C, V_{DD} = 5 V
- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:

0°C to 70°C . . . 3 V to 16 V -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 4 V to 16 V

- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Versions)
- Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input Impedance . . . 10¹² Ω Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-In Latch-Up Immunity

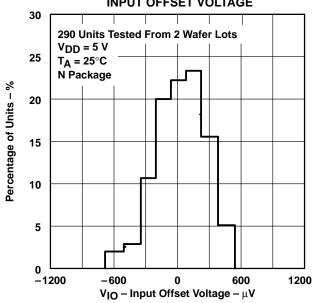

description

The TLC274 and TLC279 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.


These devices use Texas Instruments silicongate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC274 (10 mV) to the high-precision TLC279 (900 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

D, J, N, OR PW PACKAGE (TOP VIEW)



FK PACKAGE (TOP VIEW)

NC - No internal connection

DISTRIBUTION OF TLC279 INPUT OFFSET VOLTAGE

LinCMOS is a trademark of Texas Instruments.

TEXAS INSTRUMENTS

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

description (continued)

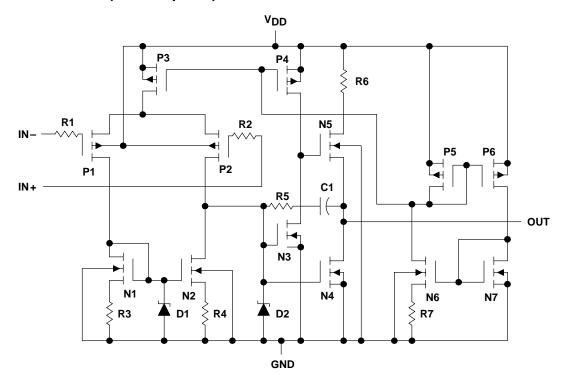
In general, many features associated with bipolar technology are available on LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC274 and TLC279. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC274 and TLC279 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.


AVAILABLE OPTIONS

			PA	CKAGED DEV	ICES		CHIP
TA	V _{IO} max AT 25°C	AT 25°C OUTLINE (D) CARRIER (FK) DIP (J) DIP (N) TSSOP (PW) 900 μV TLC279CD — — TLC279CN — 2 mV TLC274BCD — TLC274BCN — 5 mV TLC274ACD — TLC274ACN — 10 mV TLC274CD — TLC274CN TLC274CPW 900 μV TLC279ID — — TLC279IN — 2 mV TLC274BID — — TLC274BIN — 5 mV TLC274AID — — TLC274IN — 10 mV TLC279MD TLC279MFK TLC279MJ TLC279MN —	FORM (Y)				
	900 μV	TLC279CD	_	_	TLC279CN		_
0°C to 70°C	2 mV	TLC274BCD	_	_	TLC274BCN	_	_
0 0 10 70 0	5 mV	TLC274ACD		_	TLC274ACN	_	_
	10 mV	TLC274CD	_	_	TLC274CN	TLC274CPW	TLC274Y
	900 μV	TLC279ID	_	_	TLC279IN		_
-40°C to 85°C	2 mV	TLC274BID	_	_	TLC274BIN	_	_
-40 C 10 65 C	5 mV	TLC274AID	_	_	TLC274AIN	_	_
	10 mV	TLC274ID			<u>—</u> .		
-55°C to 125°C	900 μV	TLC279MD	TLC279MFK	TLC279MJ	TLC279MN	_	_
-55 0 10 125 0	10 mV	TLC274MD	TLC274MFK	TLC274MJ	TLC274MN	_	<u> </u>

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC279CDR).

equivalent schematic (each amplifier)

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TLC274Y chip information

These chips, when properly assembled, display characteristics similar to the TLC274C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	18 V
Differential input voltage, V _{ID} (see Note 2)	±V _{DD}
Input voltage range, V _I (any input)	0.3 V to V _{DD}
Input current, I ₁	±5 mA
Output current, IO (each output)	±30 mA
Total current into V _{DD}	45 mA
Total current out of GND	
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation	See Dissipation Rating Table
Continuous total dissipation	•
·	0°C to 70°C
Operating free-air temperature, T _A : C suffix	0°C to 70°C 40°C to 85°C
Operating free-air temperature, T _A : C suffix	
Operating free-air temperature, T _A : C suffix	
Operating free-air temperature, T _A : C suffix I suffix M suffix Storage temperature range	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at the noninverting input with respect to the inverting input.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW	_
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
N	1575 mW	12.6 mW/°C	1008 mW	819 mW	_
PW	700 mW	5.6 mW/°C	448 mW	_	_

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}		3	16	4	16	4	16	V
Common mode input voltage V/o	V _{DD} = 5 V	-0.2	3.5	-0.2	3.5	0	3.5	V
Common-mode input voltage, V _{IC}	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	٧
Operating free-air temperature, TA		0	70	-40	85	-55	125	°C

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	T _A †	TLC274 TLC274	C, TLC2		UNIT
						MIN	TYP	MAX	
		TLC274C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1202740	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
		TLC274AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	IIIV
\/.a	Input offeet voltage	TLC274AC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
VIO	Input offset voltage	TLC274BC	V _O = 1.4 V,	V _{IC} = 0,	25°C		340	2000	
		TLC274BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	μV
		TLC279C	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	μν
		1202790	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1500	
W/IO	Average temperature coeffic	ient of input			25°C to		1.8		μV/°C
αVIO	offset voltage				70°C		1.0		μν/Ο
10	Input offset current (see Note	e 4)			25°C		0.1	60	pА
10		,	V _O = 2.5 V,	Vic = 2.5 V	70°C		7	300	P · · ·
Iв	Input bias current (see Note	4)	10 = 1,	10 = 1	25°C		0.6	60	pА
.10		.,			70°C		40	600	Ρ
					0500	-0.2	-0.3		.,
	Common mode input voltage	o rongo			25°C	to 4	to 4.2		V
VICR	Common-mode input voltage range (see Note 5)					-0.2			
	,				Full range	to			V
						3.5			
					25°C	3.2	3.8		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	3	3.8		V
					70°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
	l anno simol differential calte				25°C	5	23		
A_{VD}	Large-signal differential volta amplification	age	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	0°C	4	27		V/mV
	априновант				70°C	4	20		
					25°C	65	80		
CMRR	Common-mode rejection ration	io	V _{IC} = V _{ICR} min		0°C	60	84		dB
					70°C	60	85		
					25°C	65	95		
k _{SVR}	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	0	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	0°C	60	94		dB
<u> </u>	יטויי יטטייטטיי				70°C	60	96		
			0.534		25°C		2.7	6.4	
I_{DD}	Supply current (four amplifie	pply current (four amplifiers)	$V_O = 2.5 \text{ V},$ No load	$V_{IC} = 2.5 V,$	0°C		3.1	7.2	mA
					70°C		2.3	5.2	

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †	TLC274	C, TLC2 IBC, TLC		UNIT
						MIN	TYP	MAX	
		TLC274C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC274C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	\/
		TI C0744C	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
\ \	lance offers contains	TLC274AC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
VIO	Input offset voltage	TI 0074D0	V _O = 1.4 V,	V _{IC} = 0,	25°C		390	2000	
		TLC274BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	/
		TI 00700	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μV
		TLC279C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1900	
00.40	Average temperature coe	efficient of			25°C to		2		μV/°C
αVIO	input offset voltage				70°C				μν/-C
110	Input offset current (see I	Note 4)			25°C		0.1	60	pА
lio	input onset current (see i	1 010 4)	V _O =.5 V,	\\\\c=5\\	70°C		7	300	PΑ
l.s	Input bias current (see No	oto 4)	VO =.5 V,	AIC = 2 A	25°C		0.7	60	pА
ΙΒ	input bias current (see Ni	Sie 4)			70°C		50	600	PΑ
						-0.2	-0.3		
					25°C	to 9	to		V
VICR	Common-mode input volt (see Note 5)	age range				-0.2	9.2	.2	
	(300 11010 0)				Full range	-0.2 to			V
						8.5			-
					25°C	8	8.5		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	7.8	8.5		V
					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
A _{VD}	Large-signal differential v amplification	oltage	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	0°C	7.5	42		V/mV
	amplification				70°C	7.5	32		
	1				25°C	65	85		
CMRR	Common-mode rejection	ratio	V _{IC} = V _{ICR} min		0°C	60	88		dB
	•				70°C	60	88		
					25°C	65	95		
ksvr	Supply-voltage rejection	ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	0°C	60	94		dB
	$(\Delta V_{DD}/\Delta V_{IO})$		-	Ü	70°C	60	96		
					25°C	1	3.8	8	
I _{DD}	Supply current (four amp	lifiers)		V _{IC} = 5 V,	0°C		4.5	8.8	-
	11 7 11 2111 (1231 2111)	· -/	No load		70°C	 	3.2	6.8	
				-	<u> </u>		J.L	5.5	

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

No series (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PARAMETER		TEST CONI	DITIONS	T _A †		4I, TLC2 4BI, TLC		UNIT
No							MIN	TYP	MAX	
No N			TI C2741	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
No			1102/41		$R_L = 10 \text{ k}\Omega$	Full range			13	\/
No			TI C274AI	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mv
TLC274Bl Ng = 50 Ω, Ng = 1.4 V, Ng = 0.	\ _{\\\}	Input offeet voltege	TLC2/4AI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			7	
No contained to the	VIO	input onset voltage	TI COZADI	V _O = 1.4 V,	V _{IC} = 0,	25°C		340	2000	
TLC279 VO = 1.4 V, RS = 50 Ω VIC = 0, RL = 10 kΩ Full range 25°C 320 900			TLC2/46I	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	\/
Average temperature coefficient of input offset voltage Part			TI C2701	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	μν
A A A A A A A A A A			1102791	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2000	
Input offset current (see Note 4)	ανιο		ent of input					1.8		μV/°C
No		land effect coment (see Nete	4)			25°C		0.1	60	A
Input bias current (see Note 4) 25°C 0.6	10	input offset current (see Note	: 4)	V 05V	V 0.5.V	85°C		24	1000	рA
Vicro Common-mode input voltage range (see Note 5) Vicro Vicr	1	lanut bina aumant (ann Nata	4\	V _O = 2.5 V,	VIC = 2.5 V	25°C		0.6	60	A
$V_{ICR} \begin{array}{c} \text{Common-mode input voltage range} \\ \text{(see Note 5)} \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \text{4} \\ \text{4.2.} \end{array} \begin{array}{c} \text{V} \\ \text{Volemation of the seed Note 5)} \end{array} \begin{array}{c} \text{V} \\ \text{Volemation of the seed Note 5)} \end{array} \begin{array}{c} \text{Volemation of 5)} \end{array} \begin{array}{c} Volemation of 5)$	ΙΊΒ	input bias current (see Note	+)			85°C		200	2000	рA
$V_{OH} \text{High-level output voltage} \begin{array}{c} V_{ID} = 100 \text{ mV}, R_{L} = 10 \text{ k}\Omega \\ \hline V_{ID} = 100 \text{ mV}, R_{L} = 10 \text{ k}\Omega \\ \hline \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ 3.2 \\ 3.8 \\ \hline \end{array} \begin{array}{c} 3.8 \\ 85^{\circ}\text{C} \\ 3 \\ 3.8 \\ \hline \end{array} \begin{array}{c} 3.8 \\ 85^{\circ}\text{C} \\ 3 \\ 3.8 \\ \hline \end{array} \begin{array}{c} 0.2 \\ 3.2 \\ 3.2 \\ \hline \end{array} \begin{array}{c} 0.2 \\ 3.2 \\ 3.2$	V:	Common-mode input voltage	range			25°C	to	to		V
$\begin{array}{c} V_{OH} & \mbox{High-level output voltage} \\ \hline V_{OL} & \mbox{Low-level output voltage} \\ \hline V_{ID} = -100 \ mV, & \mbox{I}_{OL} = 0 \\ \hline V_{ID} = -100 \ mV, & \mbox{I}_{OL} = 0 \\ \hline \hline V_{ID} = -100 \ mV, & \mbox{I}_{OL} = 0 \\ \hline \hline V_{ID} = -100 \ mV, & \mbox{I}_{OL} = 0 \\ \hline \hline V_{ID} = -100 \ mV, & \mbox{I}_{OL} = 0 \\ \hline \hline \hline V_{ID} = -100 \ mV, & \mbox{I}_{OL} = 0 \\ \hline \hline \hline V_{ID} = -100 \ mV, & \mbox{I}_{OL} = 0 \\ \hline \hline$	VICR	(see Note 5)	•			Full range	to		V	
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \begin{array}{c} 85^{\circ}\text{C} & 3 & 3.8 \\ 25^{\circ}\text{C} & 0 & 50 \\ -40^{\circ}\text{C} & 0 & 50 \\ 85^{\circ}\text{C} & 0 & 50 \\ \end{array}$ mV $A_{VD} \text{Large-signal differential voltage amplification} \qquad V_{O} = 0.25 \text{V to 2 V}, R_{L} = 10 \text{k}\Omega \qquad \begin{array}{c} 25^{\circ}\text{C} & 5 & 23 \\ -40^{\circ}\text{C} & 3.5 & 32 \\ 85^{\circ}\text{C} & 3.5 & 19 \\ \hline 85^{\circ}\text{C} & 3.5 & 19 \\ \hline 85^{\circ}\text{C} & 3.5 & 19 \\ \hline 85^{\circ}\text{C} & 65 & 80 \\ \hline -40^{\circ}\text{C} & 60 & 81 \\ \hline 85^{\circ}\text{C} & 60 & 86 \\ \hline \end{array}$ $V_{IC} = V_{ICR} \text{min} \qquad V_{IC} = V_{ICR} \text{min} \qquad \begin{array}{c} 25^{\circ}\text{C} & 65 & 95 \\ \hline -40^{\circ}\text{C} & 60 & 86 \\ \hline 85^{\circ}\text{C} & 60 & 96 \\ \hline \end{array}$ $V_{DD} = 5 \text{V to 10 V}, V_{O} = 1.4 \text{V} \qquad \begin{array}{c} 25^{\circ}\text{C} & 65 & 95 \\ \hline -40^{\circ}\text{C} & 60 & 92 \\ \hline 85^{\circ}\text{C} & 60 & 96 \\ \hline \end{array}$ $I_{DD} \text{Supply current (four amplifiers)} \qquad \begin{array}{c} V_{O} = 2.5 \text{V}, \\ N_{O} \text{load} \qquad \end{array}$						25°C	3.2	3.8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	-40°C	3	3.8		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	3	3.8		
						25°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	5	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AVD		ge	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	3.5	32		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		апринации				85°C	3.5	19		
$k_{SVR} \begin{array}{c} \text{Supply-voltage rejection ratio} \\ (\Delta V_{DD}/\Delta V_{IO}) \end{array} \begin{array}{c} V_{DD} = 5 \text{ V to 10 V}, V_{O} = 1.4 \text{ V} \\ \hline V_{DD} = 5 \text{ V to 10 V}, V_{O} = 1.4 \text{ V} \\ \hline 0.000000000000000000000000000000000$						25°C	65	80		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common-mode rejection ratio)	$V_{IC} = V_{ICR}min$		−40°C	60	81		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	60	86		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 1 1 1 1 1	_			25°C	65	95		
$V_{O} = 2.5 \text{ V}, \\ No \text{ load} \qquad V_{IC} = 2.5 \text{ V}, \\ V_{IC} = 2.5 \text{ V}, \\ No \text{ load} \qquad V_{IC} = 2.5 \text{ V}, \\ No \text{ load} \qquad V_{IC} = 2.5 \text{ V}, \\ No \text{ load} \qquad No $	ksvr			$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	-40°C	60	92		dB
$V_{O} = 2.5 \text{ V},$ $V_{IC} = 2.5 \text{ V},$ $V_{IC} = 2.5 \text{ V},$ No load $V_{O} = 2.5 \text{ V},$ No load		עם אין וויים אין				85°C	60	96		
IDD Supply current (four amplifiers) No load —40°C 3.8 8.8 mA			_	V 05V	V 05V	25°C		2.7	6.4	
	I_{DD}	Supply current (four amplifier	s)		$V_{IC} = 2.5 V,$	-40°C		3.8	8.8	mA
						85°C		2.1	4.8	

[†] Full range is –40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 10 V (unless otherwise noted)

No		PARAMETER		TEST CONI	DITIONS	T _A †		4I, TLC2 4BI, TL0		UNIT
No. Full range Full rang			_				MIN	TYP	MAX	
No input offset voltage			TI C2741			25°C		1.1	10	
No			1102741	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			13	m\/
Vico Input offset voltage Rg = 50 Ω, RL = 10 κΩ Full range 7			TI COZANI	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	IIIV
TLC274Bl NG = 1.4 V, RS = 50 Ω, RL = 10 kΩ Full range 3500 2000 TLC279l NG = 50 Ω, RL = 10 kΩ Full range 3500 2000 TLC279l NG = 50 Ω, RL = 10 kΩ Full range 3500 2000 Full range 25°C 370 1200 Full range 25°C 0.1 60 85°C 26 1000 Input offset current (see Note 4) V _{IC} = 5 V V _{IC} = 5 V V _{IC} = 5 V Input bias current (see Note 4) V _{IC} = 5 V V _{IC} = 5 V V _{IC} R Common-mode input voltage range (see Note 5) V _{ID} = 100 mV, R _L = 10 kΩ 25°C 0.1 600 70 V _{IC} R V _{IC} = 5 V V _I	\/.a	Input offset voltage	TLC2/4AI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			7	
No	1 10	input onset voltage	TI COZADI	V _O = 1.4 V,	V _{IC} = 0,	25°C		390	2000	
TLC279			TLC2/461	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	\/
Average temperature coefficient of input offset voltage Average temperature coefficient of input offset voltage Liput offset voltage Liput offset current (see Note 4) V _{IC} = 5 V, V _{IC} = 5 V V _{IC}			TI C2701	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μν
No Input offset current (see Note 4) No February No			I LC2/9	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2900	
Input offset current (see Note 4)	ανιο		ent of input					2		μV/°C
In Input bias current (see Note 4) Vo = 5 V, Vic = 5 V Se ^C 25°C 0.77 60 PA	l.a	Input offset current (see Note	4)			25°C		0.1	60	nΛ
In the last current (see Note 4) PA	l 10	input onset current (see Note	4)	V = - 5 V	V: F V	85°C		26	1000	PΑ
Vicro Common-mode input voltage range (see Note 5) V	1	Input high gurrent (and Note 4	\	$\int VO = 5 V,$	AIC = 2 A	25°C		0.7	60	- A
$\begin{array}{c} V_{ICR} \\ V_{ICR} \\ \hline \\ V_{OH} \\ \hline \\ $	'IB	input bias current (see Note 4	•)			85°C		220	2000	рА
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-0.2	-0.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C				V
$V_{OH} \text{High-level output voltage} V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad \frac{25^{\circ}\text{C}}{8.5} \qquad \frac{8.5}{5} \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad \frac{25^{\circ}\text{C}}{85^{\circ}\text{C}} \qquad \frac{8.5}{5} \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad \frac{25^{\circ}\text{C}}{85^{\circ}\text{C}} \qquad \frac{8.5}{5} \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad \frac{25^{\circ}\text{C}}{85^{\circ}\text{C}} \qquad \frac{3.5}{5} \qquad \frac{10}{50} \qquad \frac{100^{\circ}\text{C}}{10000000000000000000000000000000000$	VICR	, ,					9.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(366 14016 3)				Full range				V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	8	8.5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	-40°C	7.8	8.5		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	7.8	8.5		
						25°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	10	36		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A _{VD}		je	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	7	47		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		amplification				85°C	7	31		
						25°C	65	85		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common-mode rejection ratio	1	V _{IC} = V _{ICR} min		-40°C	60	87		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	60	88		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						+		-		
Supply current (four amplifiers) VO = 5 V, No load VIC = 5 V, NO	kSVR			$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	-40°C	60	92		dB
$V_{O} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ No load $V_{O} = 5 \text{ V},$ No load		(σΛΟΟ/σΛΙΟ)			-	85°C	60	96		
IDD Supply current (four amplifiers) No load —40°C 5.5 10 mA				,		25°C		3.8	8	
110 1000	I _{DD}	Supply current (four amplifiers	s)		$V_{IC} = 5 V$	-40°C		5.5	10	mA
				140 load		85°C		2.9	6.4	

[†] Full range is -40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETED		TEST 0011	SITIONS		TLC27	4M, TLC	279M	
	PARAMETER		TEST COND	DITIONS	T _A †	MIN	TYP	MAX	UNIT
		TLC274M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	mV
\/\·a	Input offset voltage	TLC2/4IVI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	IIIV
VIO	input onset voltage	TLC279M	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	μV
		TLG279W	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3750	μν
ανιο	Average temperature coefficie offset voltage	nt of input			25°C to 125°C		2.1		μV/°C
lio.	Input offset current (see Note	4)			25°C		0.1	60	pА
lio	input onset current (see Note	4)	V _O = 2.5 V,	V:0 - 2.5.V	125°C		1.4	15	nA
1.5	Input bias current (see Note 4	١	V() = 2.5 V,	VIC = 2.5 V	25°C		0.6	60	pА
IB	input bias current (see Note 4)			125°C		9	35	nA
\\.	Common-mode input voltage	range			25°C	0 to 4	-0.3 to 4.2		V
VICR	(see Note 5)	-			Full range	0 to 3.5			V
					25°C	3.2	3.8		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	3	3.8		V
					125°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltag amplification	е	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	−55°C	3.5	35		V/mV
	apoa.io				125°C	3.5	16		
					25°C	65	80		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	81		dB
					125°C	60	84		
	Complex colleges as in all a series				25°C	65	95		
k _{SVR}	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	90		dB
	(DD: 10/				125°C	60	97		
			V _O = 2.5 V,	V10 - 25 V	25°C		2.7	6.4	
IDD	Supply current (four amplifiers	s)	VO = 2.5 V, No load	VIC = 2.5 V,	−55°C		4	10	mA
					125°C		1.9	4.4	

[†] Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 10 V (unless) otherwise noted)

	DADAMETED		TEST COM	NITIONS	_ +	TLC27	4M, TLC	279M	UNIT
	PARAMETER		TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	UNII
		TLC274M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	mV
V _{IO}	Input offset voltage	TLG274IVI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	IIIV
۷IO	input onset voitage	TLC279M	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μV
		TLO27 9W	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			4300	μν
α VIO	Average temperature coefficie offset voltage	nt of input			25°C to 125°C		2.2		μV/°C
1	Input offact ourrent (acc Note	4)			25°C		0.1	60	pA
lio	Input offset current (see Note	4)	V _O = 5 V,	V _{IC} = 5 V	125°C		1.8	15	nA
l.s	Input bias current (see Note 4		VO = 5 V,	AIC = 2 A	25°C		0.7	60	pA
IIB	input bias current (see Note 4)			125°C		10	35	nA
	Common-mode input voltage	ange			25°C	0 to 9	-0.3 to 9.2		V
VICR	(see Note 5)	J			Full range	0 to 8.5			V
					25°C	8	8.5		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	7.8	8.5		V
					125°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	10	36		
A_{VD}	Large-signal differential voltage amplification	е	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	−55°C	7	50		V/mV
	ampimoation				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	87		dB
					125°C	60	86		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	90		dB
	(<u>¬, חח, ¬, ו</u>				125°C	60	97		
			57		25°C		3.8	8	
I_{DD}	Supply current (four amplifiers)	$V_O = 5 V$, V_{IO}	$V_{IC} = 5 V$,	−55°C		6.0	12	mA
			1.0.7000		125°C		2.5	5.6	

[†]Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	т _А	TLC2740 TL0 TLC2741	C274AC	;,	UNIT
					MIN	TYP	MAX	
				25°C		3.6		
			V _{IPP} = 1 V	0°C		4		
SR	Slew rate at unity gain	$R_L = 10 \Omega$,		70°C		3		V/μs
SK	Siew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		ν/μδ
			$V_{IPP} = 2.5 V$	0°C		3.1		
				70°C		2.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		320		
Вом	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	CL = 20 pF, See Figure 1	0°C		340		kHz
		N_ = 10 K32,	Occ riguic r	70°C		260		
				25°C		1.7		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	0°C		2		MHz
		See Figure 3		70°C		1.3		
)/ 40 m)/	, ,	25°C		46°		
φm		$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$f = B_1$,	0°C		47°		
		-L -V F.,		70°C		44°		

operating characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 10 V

	PARAMETER	TEST CO	NDITIONS	TA	TLC274C, TLC27 TLC274AC, TLC274BC, TLC2		UNIT
					MIN TYP	MAX	
				25°C	5.3		
			V _{IPP} = 1 V	0°C	5.9		
SR	Slew rate at unity gain	$R_L = 10 \Omega$,		70°C	4.3		V/μs
J	Siew rate at unity gain	C _L = 20 pF, See Figure 1		25°C	4.6		ν/μ5
			V _{IPP} = 5.5 V	0°C	5.1		
				70°C	3.8		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C	25		nV/√ Hz
				25°C	200		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	0°C	220		kHz
			See rigure r	70°C	140		
				25°C	2.2		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	0°C	2.5		MHz
		Occ riguic o		70°C	1.8		
		V 40 V	, 5	25°C	49°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	0°C	50°		
		· · ·	255gai 0 0	70°C	46°		

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	ONDITIONS	TA	TLC274I, TLC274AI, TLC274BI, TLC279I			UNIT								
					MIN	TYP	MAX									
				25°C		3.6										
			V _{IPP} = 1 V	−40°C		4.5										
SR		$R_L = 10 \text{ k}\Omega$		85°C		2.8		\//uo								
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs								
			V _{IPP} = 2.5 V		-40°C		3.5									
			85		$R_{S} = 20 \Omega,$		85°C		2.3							
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz								
		$V_O = V_{OH}$, $C_L = 20 \text{ pF}$, $R_L = 10 \text{ k}\Omega$, See Figure 1	V _O = V _{OH} , C			I			Ī., ,			25°C		320		
ВОМ	Maximum output-swing bandwidth			VO = VOH,	-40°C		380		kHz							
			C _L = 20 pF,	85°C		250										
				25°C		1.7										
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	-40°C		2.6		MHz								
		Occ riguic 5		85°C		1.2										
	-	$V_1 = 10 \text{ mV}, \qquad f = B_1,$ $C_1 = 20 \text{ pF} \qquad \text{See Figure}$						46°								
φm	Phase margin							$V_{\parallel} = 10 \text{ mV},$ $C_{\parallel} = 20 \text{ pF},$			f = B ₁ , See Figure 3	-40°C		49°		
	GL = 20 pr,		23090.00	85°C		43°										

operating characteristics at specified free-air temperature, V_{DD} = 10 V

PARAMETER		PARAMETER TEST CONDITIONS		TA	TLC274I, TLC274AI, TLC274BI, TLC279I		UNIT								
					MIN TYP	MAX									
				25°C	5.3										
			V _{IPP} = 1 V	-40°C	6.7										
SR	Slow rate at unity gain	$R_L = 10 \Omega$		85°C	4		V/μs								
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C	4.6		ν/μ5								
				V _{IPP} = 5.5 V	-40°C	5.8									
						3.5									
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C	25		nV/√ Hz								
				25°C	200										
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,	$C_L = 20 \text{ pF},$ = 10 k Ω , See Figure 1	-40°C	260		kHz								
		N_ = 10 Ks2,	Gee rigure r	85°C	130										
				25°C	2.2										
В ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	-40°C	3.1		MHz								
		occ riguic s	iguie 3		1.7										
	-	10	4 D	25°C	49°										
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$ $C_{\parallel} = 20 \text{ pF}$						V _I = 10 mV, C _L = 20 pF,			f = B ₁ , See Figure 3	-40°C	52°		
	-	OL = 20 pr , See Figure 3		85°C	46°										

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	DADAMETED	TEST CO.	NDITIONS	-	TLC274	M, TLC	279M	LINUT							
	PARAMETER	TEST CO	NDITIONS	TA	3. 4. 2. 2. 3. 3. 40 23 40 23 1. 2. 46 49	TYP	MAX	UNIT							
				25°C		3.6									
			V _{IPP} = 1 V	−55°C		4.7									
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$,	$V_{IPP} = 1 V$ $ 0 kΩ$, $0 pF$, gure 1 $V_{IPP} = 2.5 V$ $ 1 cm (Hz), 0 pF, 0 kΩ, 0 pF, 0 kΩ, 0 pF, 0 pF,$	125°C		2.3		\//uc							
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs							
			V _{IPP} = 2.5 V	−55°C		3.7									
		See Figure 1 $V_{IPP} = 2.5 \text{ V}$ -55° 125°	125°C		2										
Vn	Equivalent input noise voltage	· ·	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz							
				25°C		320									
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , C _L =	VO = VOH, R _L = 10 kO	VO = VOH, R ₁ = 10 kO	VO = VOH, R _L = 10 kO	VO = VOH,	C _L = 20 pF, See Figure 1	−55°C		400		kHz			
		10 132,	occ rigure r	125°C		230									
		.,,		25°C		1.7									
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3		−55°C		2.9		MHz							
		Occ rigure 3		125°C		1.1									
		\/ 40\/	. D	25°C		46°									
ϕ_{m}	Phase margin	$V_{ } = 10 \text{ mV},$ $C_{ } = 20 \text{ pF}$					$V_{\parallel} = 10 \text{mV},$ $C_{\parallel} = 20 \text{pF},$			r = B ₁ , See Figure 3	−55°C		49°		
		F.,		125°C		41°									

operating characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 10 V

	DADAMETED	TEST 66	NDITIONS	Ţ.	TLC274	M, TLC	279M	LINUT								
	PARAMETER	lesi co	NDITIONS	TA	MIN	TYP	MAX	UNIT								
				25°C		5.3										
			V _{IPP} = 1 V	−55°C		7.1										
SR	Slow rate of unity gain	$R_L = 10 \Omega$, $C_L = 20 pF$, See Figure 1 $V_{IPP} = 5.5 V$	125°C		3.1		\//uo									
SK.	Slew rate at unity gain		25°C		4.6		V/μs									
				−55°C		6.1										
				125°C		2.7										
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz								
	Maximum output-swing bandwidth VO = VOH, CL = 20 pF,	$V_O = V_{OH},$ $C_L = 20 \text{ pF},$ $R_L = 10 \text{ k}\Omega,$ See Figure 1	$R_L = 10 \text{ k}\Omega$, See Figure 1	V _O = V _{OH} ,	VO = VOH,	VO = VOH,	V _O = V _{OH} ,	VO = VOH,		25°C		200				
ВОМ									VO = VOH,	VO = VOH,	VO = VOH,	C _L = 20 pF,	−55°C		280	
				C _L = 20 pF, See Figure 1	125°C		110									
		V_{I} = 10 mV, C_{L} = 20 pF, $-55^{\circ}C$ 3.		25°C		2.2										
В1	Unity-gain bandwidth		3.4		MHz											
			oce i iguie o	333 1 iguil 3		125°C		1.6								
		V 40 V	. 5	25°C		49°										
φm	Phase margin		$V_{I} = 10 \text{ mV},$					$V_{\parallel} = 10 \text{mV},$ $C_{\parallel} = 20 \text{pF},$				−55°C		52°		
		OL = 23 P1 ,	OL = 20 Pi , See Figure 3			44°										

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		LC274Y		UNIT
	PARAMETER	IESI CONL	TEST CONDITIONS		TYP	MAX	UNII
V _{IO}	Input offset voltage	$V_{O} = 1.4 \text{ V},$ RS = 50 Ω ,	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
I _{IO}	Input offset current (see Note 4)	V _O = 2.5 V,	V _{IC} = 2.5 V		0.1		pA
I _{IB}	Input bias current (see Note 4)	VO = 2.5 V,	vIC = 5.5 v		0.6		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		٧
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
AVD	Large-signal differential voltage amplification	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	5	23		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	80		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (four amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,		2.7	6.4	mA

electrical characteristics, V_{DD} = 10 V, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONI	TEST CONDITIONS		LC274Y		UNIT
		TEST CONI	DITIONS	MIN	TYP	MAX	UNII
VIO	Input offset voltage	$V_O = 1.4 \text{ V},$ RS = 50 Ω ,	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
lιο	Input offset current (see Note 4)	Vo - 5 V	\/.o - F \/		0.1		pA
I _{IB}	Input bias current (see Note 4)	$V_O = 5 V$, $V_{IC} = 5 V$			0.7		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		V
Vон	High-level output voltage	V _{ID} = 100 mV,	R _L = 10 kΩ	8	8.5		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
A _{VD}	Large-signal differential voltage amplification	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	10	36		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	85		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (four amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,		3.8	8	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics, V_{DD} = 5 V, T_A = 25°C

PARAMETER		Ι ,	TEST CONDITIONS		TLC274Y			UNIT
	PARAMETER	'	TEST CONDITIONS			TYP	MAX	UNIT
SR	Slew rate at unity gain	[V _{IPP} = 1 V		3.6		V/µs
SIX	Siew rate at unity gain			See Figure 1 V _{IPP} = 2.5 V		See Figure 1 V _{IPP} = 2.5 V		2.9
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 10 \text{ k}\Omega$,		320		kHz
B ₁	Unity-gain bandwidth	$V_I = 10 \text{ mV},$	C _L = 20 _P F,	See Figure 3		1.7		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	$f = B_1$,	C _L = 20 pF,		46°		

operating characteristics, V_{DD} = 10 V, T_A = 25°C

PARAMETER		1	TEST CONDITIONS		TLC274Y			UNIT
	PARAMETER	'	TEST CONDITIONS			TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$,	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, V_{IF}			5.3		V/µs
SIX	Siew rate at unity gain			V _{IPP} = 5.5 V		4.6		ν/μ5
V_n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 10 \text{ k}\Omega$,		200		kHz
B ₁	Unity-gain bandwidth	$V_I = 10 \text{ mV},$	C _L = 20 _P F,	See Figure 3		2.2		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		49°		

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC274 and TLC279 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

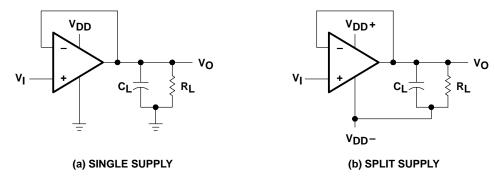


Figure 1. Unity-Gain Amplifier

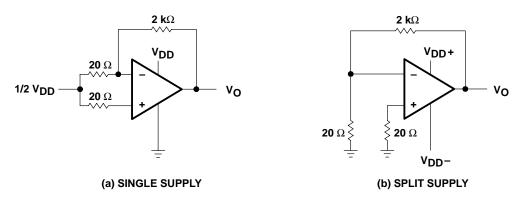


Figure 2. Noise-Test Circuit

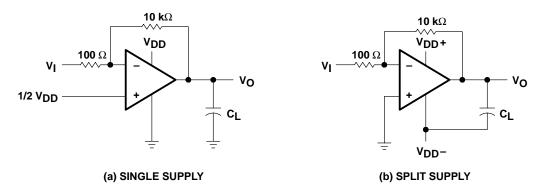


Figure 3. Gain-of-100 Inverting Amplifier

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC274 and TLC279 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

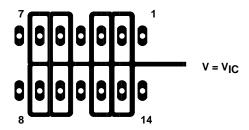


Figure 4. Isolation Metal Around Device Inputs (J and N packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

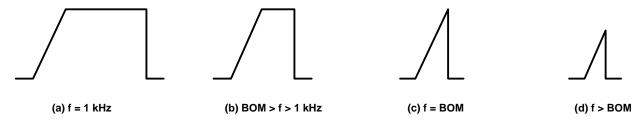


Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
۷ _{IO}	Input offset voltage	Distribution	6, 7
ανιο	Temperature coefficient of input offset voltage	Distribution	8, 9
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
V _{OL}	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
AVD	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
liO	Input offset current	vs Free-air temperature	22
VIС	Common-mode input voltage	vs Supply voltage	23
IDD	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
Vn	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

TYPICAL CHARACTERISTICS

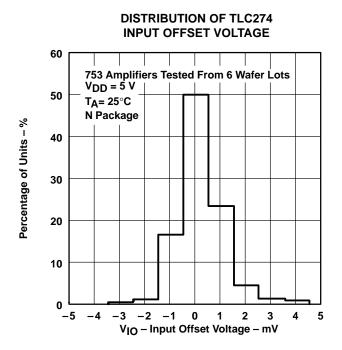


Figure 6

DISTRIBUTION OF TLC274 AND TLC279

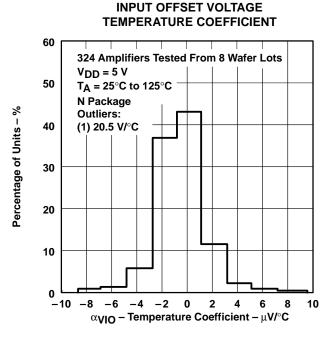


Figure 8

DISTRIBUTION OF TLC274 INPUT OFFSET VOLTAGE

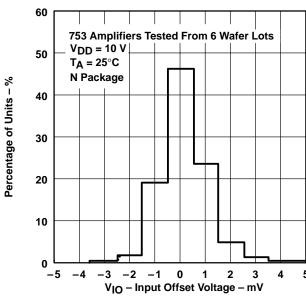


Figure 7

DISTRIBUTION OF TLC274 AND TLC279 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

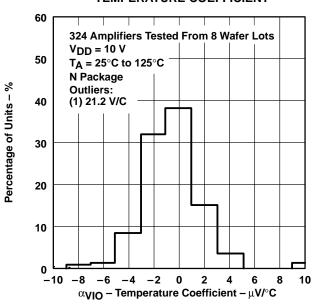


Figure 9

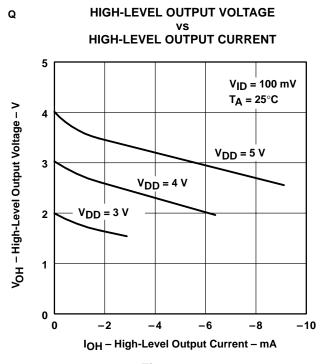


Figure 10

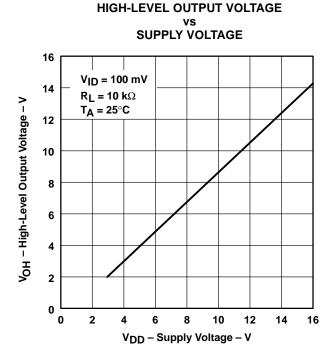


Figure 12

HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

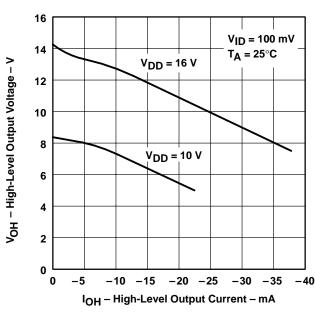


Figure 11

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

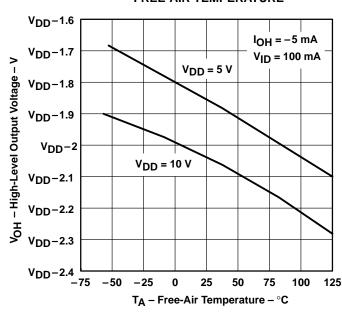


Figure 13

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

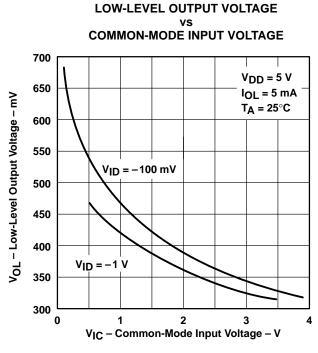
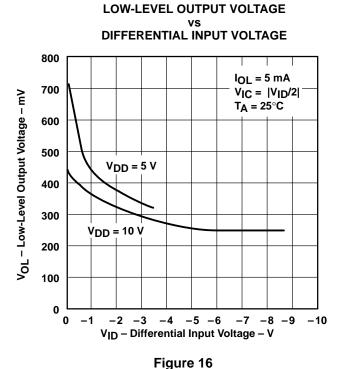



Figure 14

LOW-LEVEL OUTPUT VOLTAGE

vs

COMMON-MODE INPUT VOLTAGE

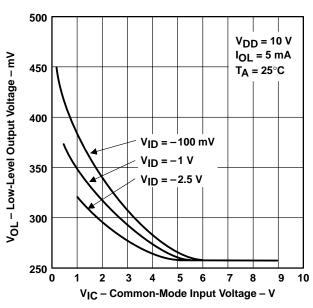


Figure 15

LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

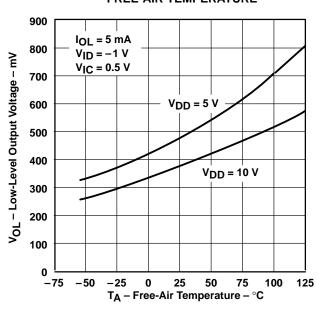


Figure 17

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

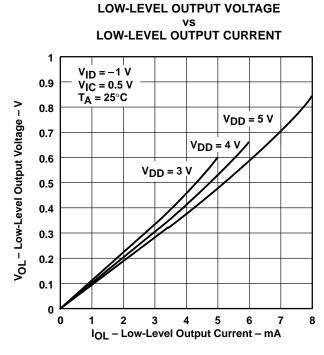


Figure 18

LARGE-SIGNAL

DIFFERENTIAL VOLTAGE AMPLIFICATION

SUPPLY VOLTAGE

Figure 20

V_{DD} - Supply Voltage - V

10

12

14

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

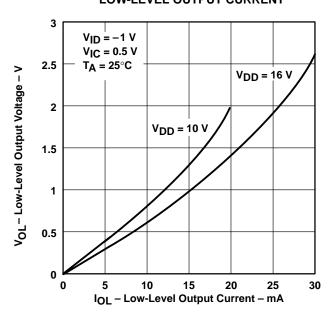


Figure 19

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE

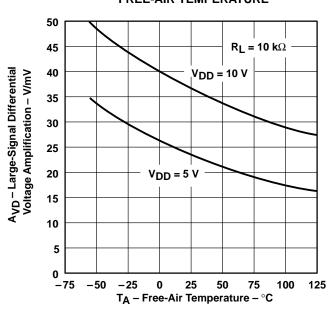


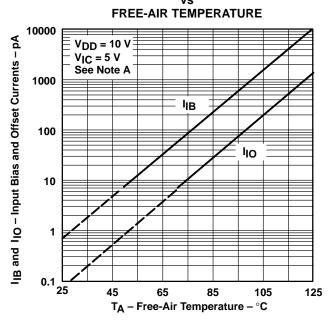
Figure 21

16

0 0

2

 $^{\ ^{\}dagger} \, {\hbox{\scriptsize Data}} \, \, {\hbox{\scriptsize at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices}.$


COMMON-MODE

INPUT VOLTAGE POSITIVE LIMIT

vs **SUPPLY VOLTAGE**

TYPICAL CHARACTERISTICS[†]

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

16 $T_A = 25^{\circ}C$ V_{IC} - Common-Mode Input Voltage - V 14 12 10 8 6 2

6

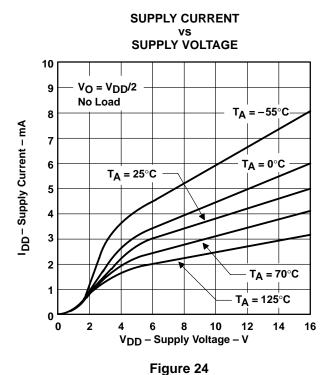
8

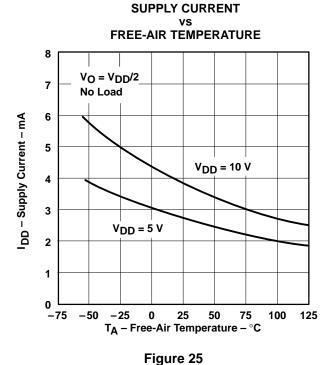
V_{DD} - Supply Voltage - V

Figure 23

10

12


14


16

2

0

Figure 22

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

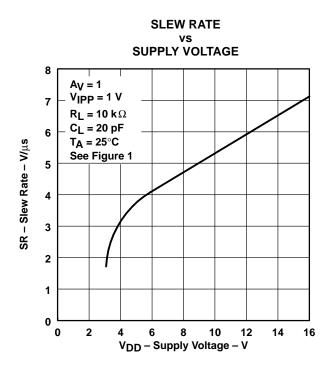


Figure 26

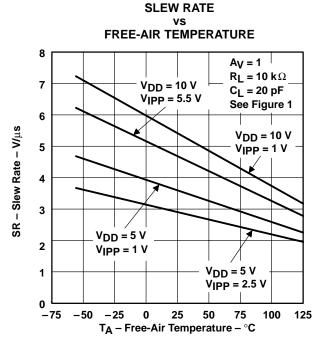
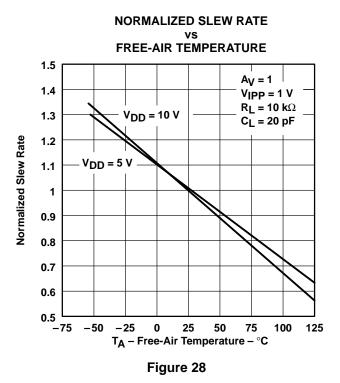
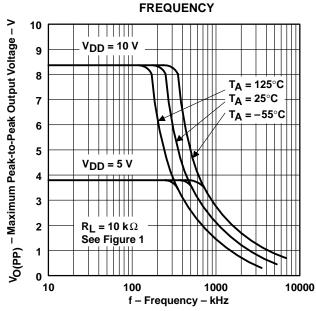
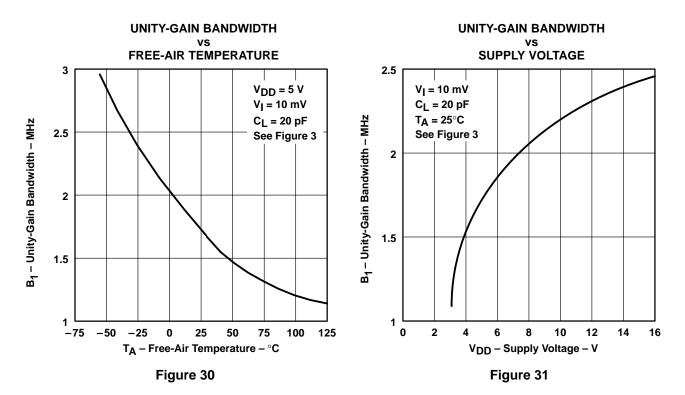
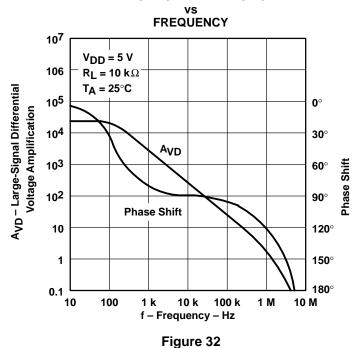



Figure 27

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs


Figure 29

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE **AMPLIFICATION AND PHASE SHIFT**

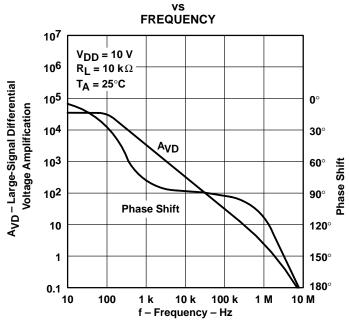
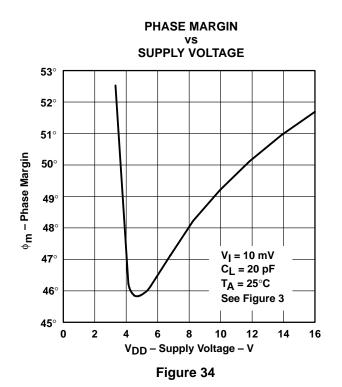
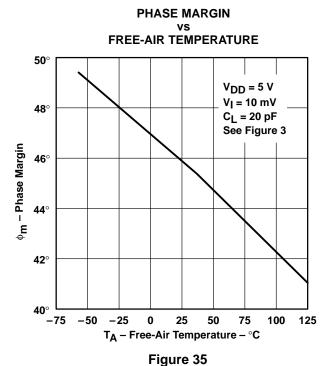
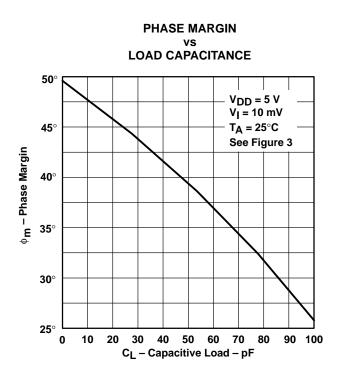




Figure 33



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

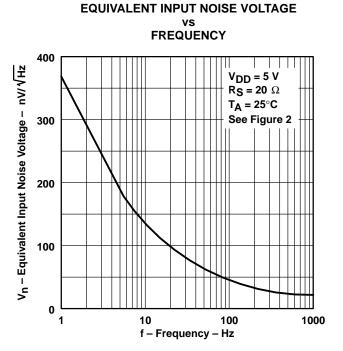


Figure 37

APPLICATION INFORMATION

single-supply operation

While the TLC274 and TLC279 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC274 and TLC279 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC274 and TLC279 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require R_C decoupling.

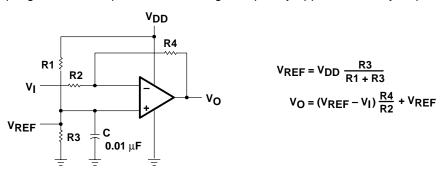


Figure 38. Inverting Amplifier With Voltage Reference

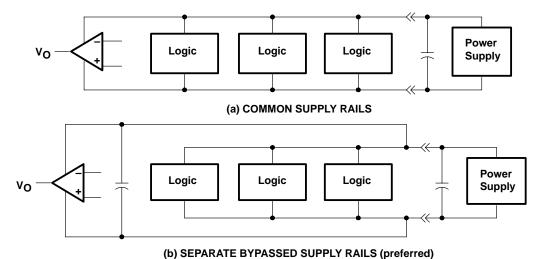


Figure 39. Common Versus Separate Supply Rails

APPLICATION INFORMATION

input characteristics

The TLC274 and TLC279 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1$ V at $T_A = 25$ °C and at $V_{DD} - 1.5$ V at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC274 and TLC279 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC274 and TLC279 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC274 and TLC279 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

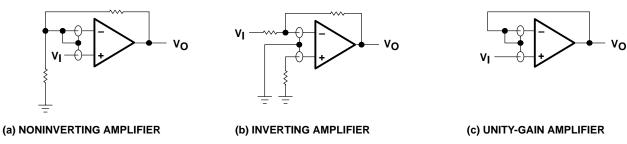
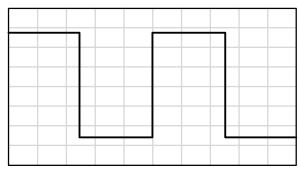
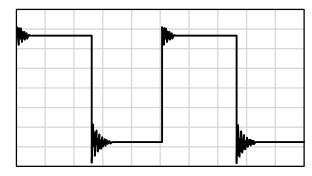


Figure 40. Guard-Ring Schemes

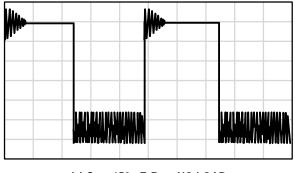
output characteristics


The output stage of the TLC274 and TLC279 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

All operating characteristics of the TLC274 and TLC279 were measured using a 20-pF load. The devices drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.



APPLICATION INFORMATION


output characteristics (continued)

(a) $C_L = 20 pF$, $R_L = NO LOAD$

(b) $C_L = 130 \text{ pF}, R_L = NO \text{ LOAD}$

(c) $C_L = 150 \text{ pF}$, $R_L = NO \text{ LOAD}$

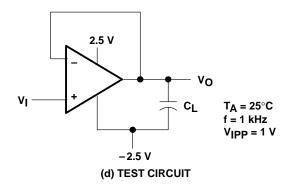
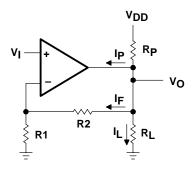



Figure 41. Effect of Capacitive Loads and Test Circuit

Although the TLC274 and TLC279 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (R_P) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately $60~\Omega$ and $180~\Omega$, depending on how hard the op amp input is driven. With very low values of R_P, a voltage offset from 0~V at the output occurs. Second, pullup resistor R_P acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

APPLICATION INFORMATION

output characteristics (continued)

$$Rp = \frac{V_{DD} - V_{O}}{I_{F} + I_{L} + I_{P}}$$

Ip = Pullup current required by the operational amplifier (typically 500 μA)

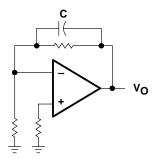


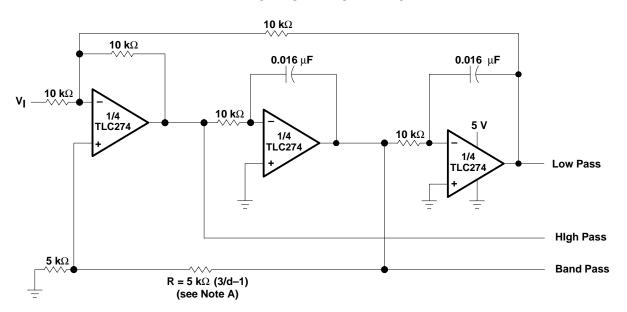
Figure 43. Compensation for Input Capacitance

Figure 42. Resistive Pullup to Increase VOH

feedback

Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

electrostatic discharge protection


The TLC274 and TLC279 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature-dependent and have the characteristics of a reverse-biased diode.

latch-up

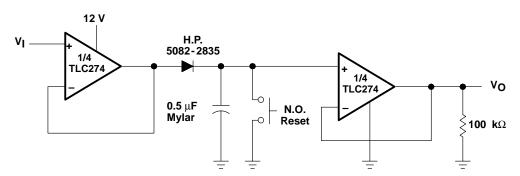
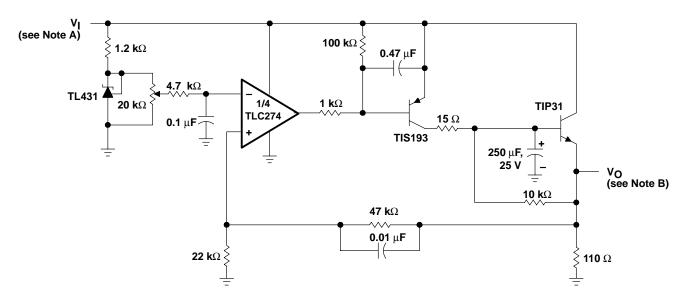
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC274 and TLC279 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

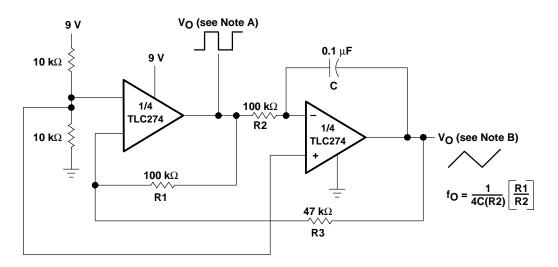
The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

APPLICATION INFORMATION

NOTE A: d = damping factor, 1/Q

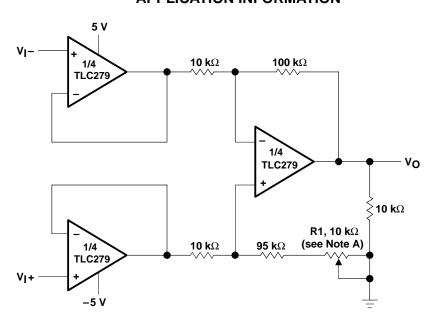
Figure 44. State-Variable Filter


Figure 45. Positive-Peak Detector

APPLICATION INFORMATION

NOTES: B. $V_I = 3.5 \text{ V to } 15 \text{ V}$ C. $V_O = 2 \text{ V}, 0 \text{ to } 1 \text{ A}$


Figure 46. Logic-Array Power Supply

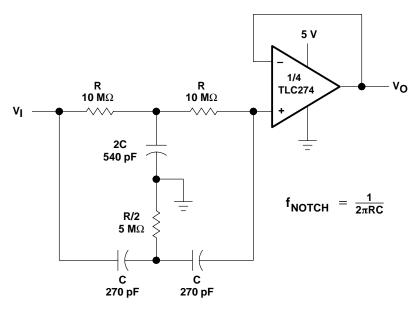
NOTES: A. $V_{O(PP)} = 8 \text{ V}$ B. $V_{O(PP)} = 4 \text{ V}$

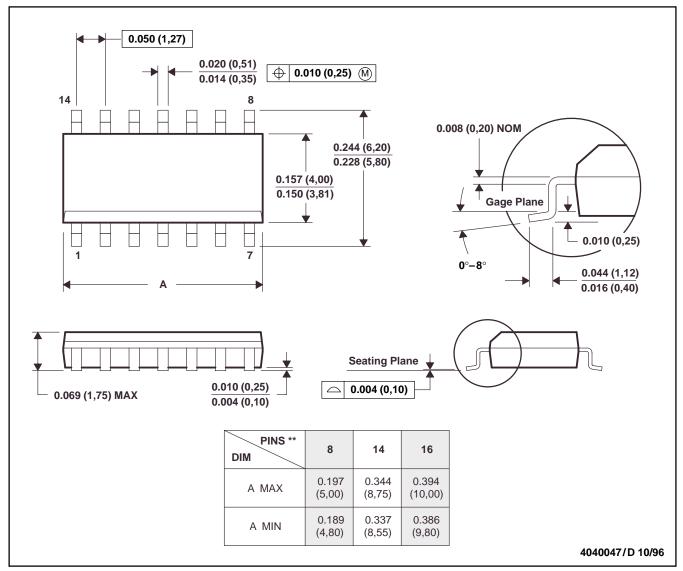
Figure 47. Single-Supply Function Generator

APPLICATION INFORMATION

NOTE C: CMRR adjustment must be noninductive.

Figure 48. Low-Power Instrumentation Amplifier




Figure 49. Single-Supply Twin-T Notch Filter

MECHANICAL INFORMATION

D (R-PDSO-G**)

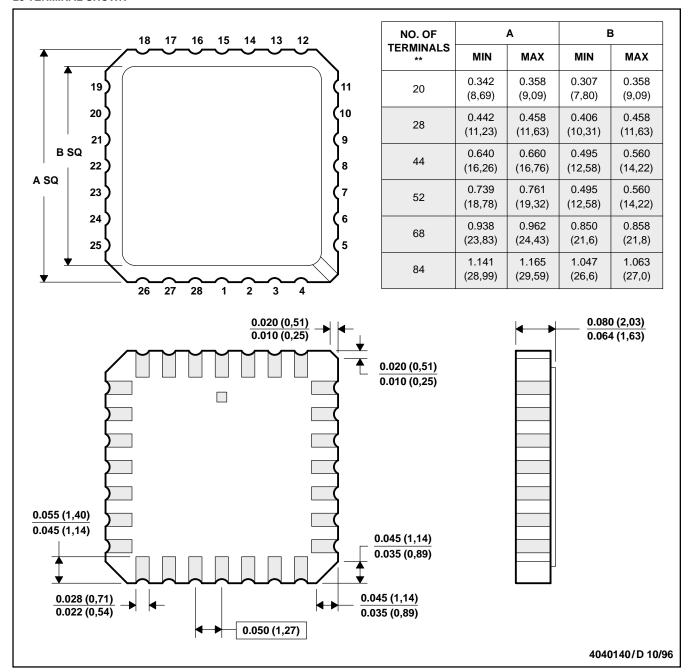
PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-012

MECHANICAL INFORMATION

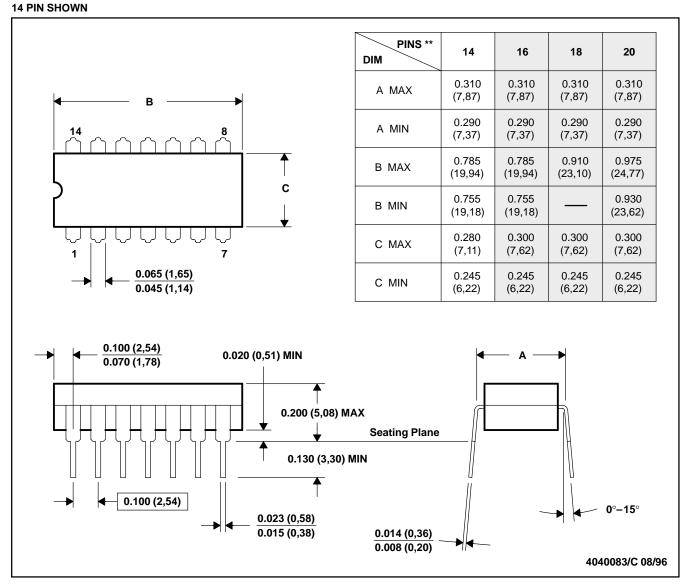
FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004



MECHANICAL INFORMATION

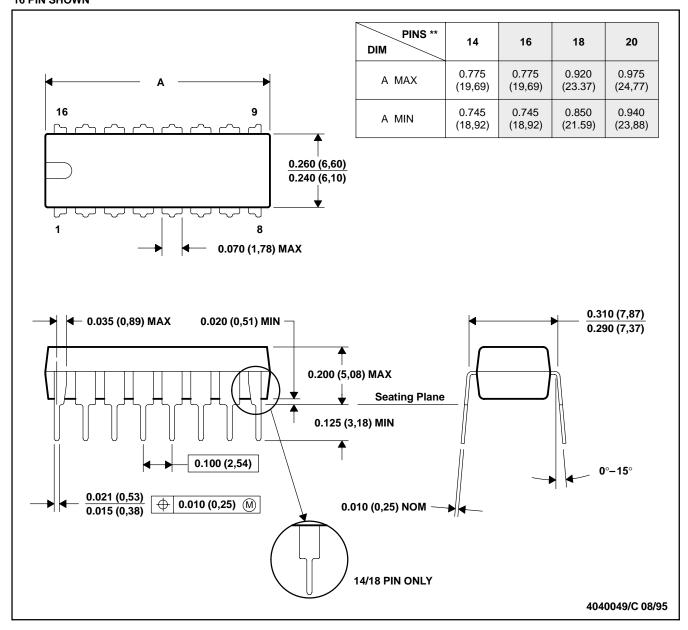
J (R-GDIP-T**)

0 (IX ODII I)

CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, and GDIP1-T20



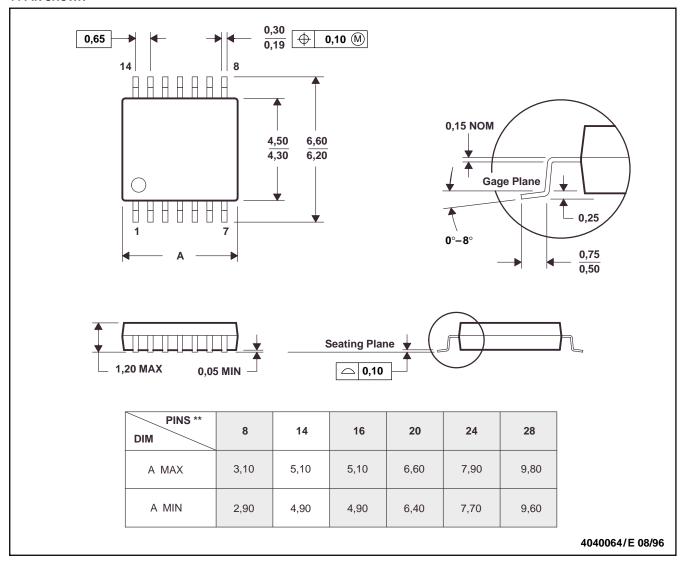
MECHANICAL INFORMATION

N (R-PDIP-T**)

16 PIN SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

MECHANICAL INFORMATION

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265