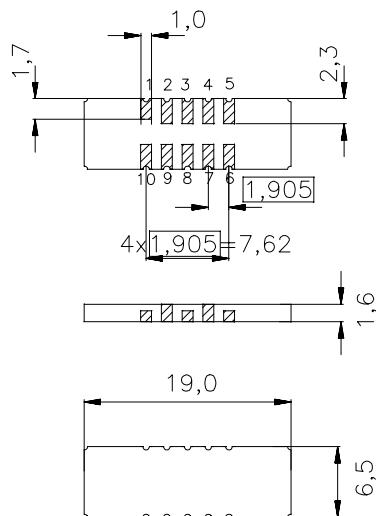


SAW filters for infrastructure systems

Series/Type: B3873

The following products presented in this data sheet are being withdrawn.

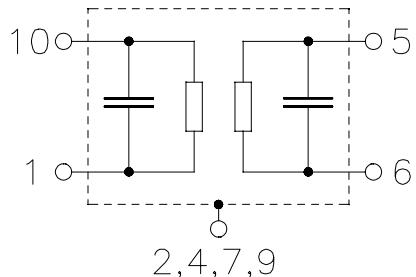
Ordering Code	Substitute Product	Date of Withdrawal	Deadline Last Orders	Last Shipments
B39241B3873U210		2012-01-13	2012-12-31	2013-03-30


For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

Data Sheet
Features

- High performance IF bandpass filter
- Temperature stable
- Hermetically sealed ceramic package

Terminals


- Gold plated

Ceramic package DCC18

Dimensions in mm, approx. weight 0,7 g

Pin configuration

10	Input
1	Input ground
5	Output
6	Output ground
3, 8	Ground
2, 4, 7, 9	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B3873	B39241-B3873-U210	C61157-A7-A54	F61074-V8166-Z000

Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T	-40/ +85	°C	
Storage temperature range	T_{stg}	-40/ +85	°C	
DC voltage	V_{DC}	0	V	
Source power	P_s	0	dBm	

SAW Components**B3873****Low-Loss Filter****240,0 MHz****Data Sheet****Characteristics**

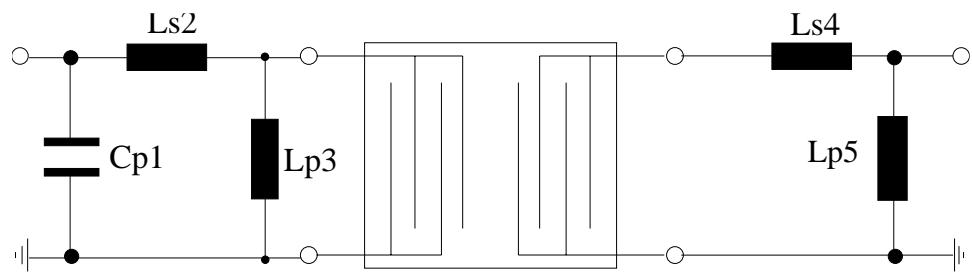
Operating temperature:

 $T = -10..+85^\circ\text{C}$

Terminating source impedance:

 $Z_S = 50 \Omega$ and matching network

Terminating load impedance:


 $Z_S = 50 \Omega$ and matching network

			min.	typ.	max.	
Nominal frequency	f_N	—	240,0	—	—	MHz
Minimum insertion attenuation (including matching network)	α_{\min}	12,0	14,0	16,0	—	dB
Passband width	$\alpha_{\text{rel}} \leq 1 \text{ dB}$	$B_{1\text{dB}}$	1,1	1,25	—	MHz
Amplitude ripple (p-p)	$f_N \pm 0,55 \text{ MHz}$	$\Delta\alpha$	—	0,7	1,0	dB
Absolute group delay (at f_N)		τ	—	1,8	3,5	μs
Group delay ripple (p-p)	$f_N \pm 0,55 \text{ MHz}$	$\Delta\tau$	—	120	200	ns
Deviation of linear phase (p-p)	$f_N \pm 0,55 \text{ MHz}$	$\Delta\phi$	—	5	6	°
Relative attenuation (relative to α_{\min})	α_{rel}					
$f_N \pm 0,9 \text{ MHz}$...	$f_N \pm 1,25 \text{ MHz}$		10	15	—	dB
$f_N \pm 1,25 \text{ MHz}$...	$f_N \pm 1,7 \text{ MHz}$		25	30	—	dB
$f_N \pm 1,7 \text{ MHz}$...	$f_N \pm 1,9 \text{ MHz}$		32	35	—	dB
$f_N \pm 1,9 \text{ MHz}$...	$f_N \pm 2,5 \text{ MHz}$		35	40	—	dB
$f_N \pm 2,5 \text{ MHz}$...	$f_N \pm 7,0 \text{ MHz}$		38	42	—	dB
$f_N \pm 7,0 \text{ MHz}$...	$f_N \pm 70 \text{ MHz}$		40	45	—	dB
Input and output return loss		12	17	—	—	dB
Temperature coefficient of frequency ¹⁾	TC_f	—	—0,036	—	—	ppm/K ²
Turnover temperature	T_0	—	40	—	—	°C

¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

Matching network to 50 Ω

(Element values depend upon PCB layout)

$$C_{p1} = 15 \text{ pF}$$

$$L_{s4} = 10 \text{ nH}$$

$$L_{s2} = 27 \text{ nH}$$

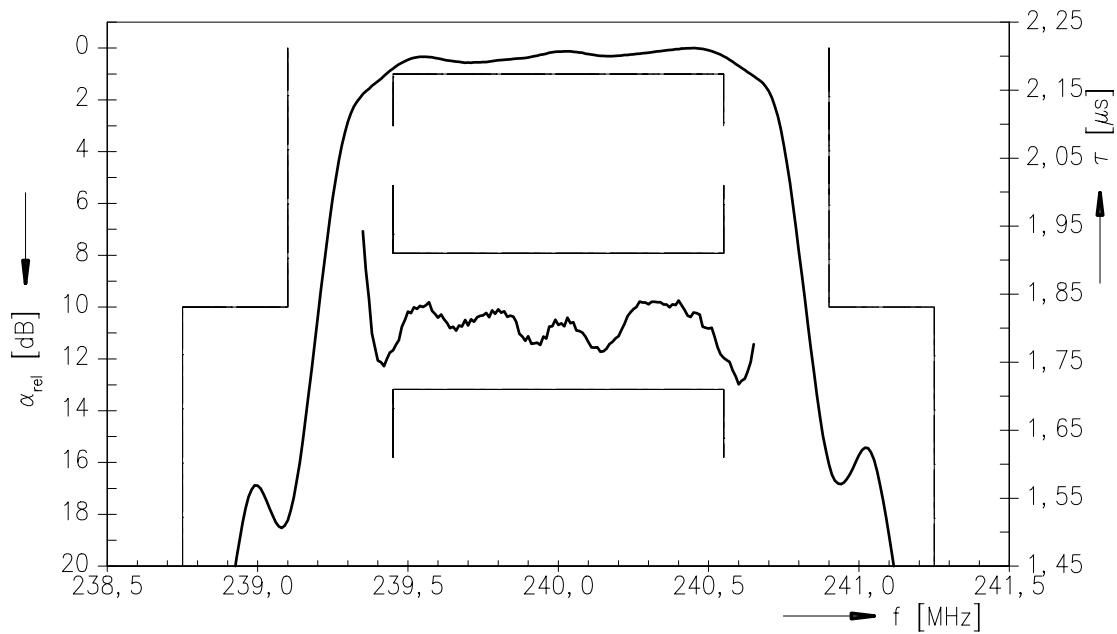
$$L_{p5} = 10 \text{ nH}$$

$$L_{p3} = 7,8 \text{ nH}$$

SAW Components

B3873

Low-Loss Filter


240,0 MHz

Data Sheet

Normalized frequency response

Normalized frequency response (pass band)

SAW Components

B3873

Low-Loss Filter

240,0 MHz

Data Sheet

Published by EPCOS AG

Surface Acoustic Wave Components Division, SAW MC IS

P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

EPCOS:

[B39241B3873U210](#)