

www.ti.com

MuxIt™ PLL FREQUENCY MULTIPLIER

FEATURES

- A Member of the MuxIt[™] Serializer-Deserializer Building-Block Chip Family
- Pin Selectable Frequency Multiplier Ratios Between 4 and 40
- Input Clock Frequencies From 5 to 50 MHz
- Multiplied Clock Frequencies up to 400 MHz
- Internal Loop Filters and Low PLL-Jitter of 20 ps RMS Typical at 200 MHz
- LVDS Compatible Differential Inputs and Outputs Meet or Exceed the Requirements of ANSI EIA/TIA-644-A
- LVTTL Compatible Inputs Are 5 V Tolerant
- LVDS Inputs and Outputs ESD Protection Exceeds 12 kV HBM
- Operates From a Single 3.3 V Supply
- Packaged in 28-Pin Thin Shrink Small-Outline Package With 26 mil Terminal Pitch

SN65LVDS150 PW PACKAGE (Marked as 65LVDS150) V_{CC} 1 28 NC 27 NC CRI+ [2 26 NC CRI- [3 V_T **∏** 4 25 V_{CC} GND 5 24 GND 23 NC M1 **∏** 6 22 | GND M2 **∏** 7 M3 **∏** 8 21 NC М4 🛮 9 20 MCO+

19 MCO-

18 T GND

17 TEN

LCRO- 13 16 LCRO_EN
LCRO+ 14 15 LVO

NC - No internal connection

M5 **□** 10

BSEL I 11

GND **1** 12

DESCRIPTION

The MuxIt is a family of general-purpose, multiple-chip building blocks for implementing parallel data serializers and deserializers. The system allows for wide parallel data to be transmitted through a reduced number of differential transmission lines over distances greater than can be achieved with a single-ended (e.g., LVTTL or LVCMOS) data interface. The number of bits multiplexed per transmission line is user selectable, allowing for higher transmission efficiencies than with other existing fixed ratio solutions. MuxIt utilizes the LVDS (TIA/EIA-644) low voltage differential signaling technology for communications between the data source and data destination.

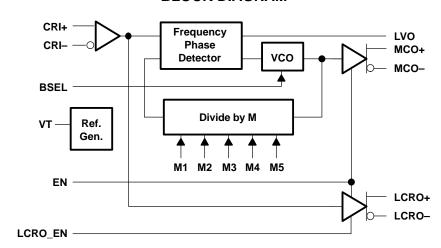
The MuxIt family initially includes three devices supporting simplex communications; *The SN65LVDS150 Phase Locked Loop-Frequency Multiplier, The SN65LVDS151 Serializer-Transmitter,* and *The SN65LVDS152 Receiver-Deserializer.*

The SN65LVDS150 is a PLL based frequency multiplier designed for use with the other members of the MuxIt family of serializers and deserializers. The frequency multiplication ratio is pin selectable over a wide range of values from 4 through 40 to accommodate a broad spectrum of user needs. No external filter components are needed. A PLL lock indicator output is available which may be used to enable link data transfers.

The design of the SN65LVDS150 allows it to be used at either the transmit end or the receive end of the MuxIt serial link. The differential clock reference input (CRI) is driven by the system's parallel data clock when at the source end of the link, or by the link clock when at the destination end of the link. The differential clock reference input may be driven by either an LVDS differential signal, or by a single ended clock of either polarity. For single-ended use the nonclocked input is biased to the logic threshold voltage. A $V_{\rm CC}/2$ threshold reference, VT, is provided on a pin adjacent the differential CRI pins for convenience when the input is used in a single-ended mode.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MuxIt is a trademark of Texas Instruments.

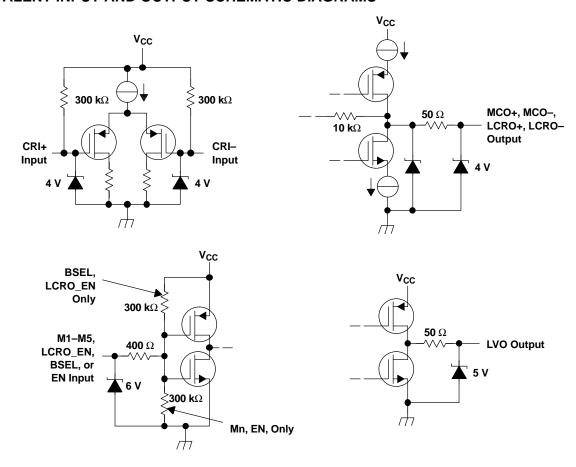

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

The multiplied clock output (MCO) is an LVDS differential signal used to drive the high-speed shift registers in either the SN65LVDS151 serializer-transmitter or the SN65LVDS152 receiver-deserializer. The link clock reference output (LCRO) is an LVDS differential signal provided to the SN65LVDS151 serializer-transmitter for transmission over the link.

An internal power on reset and an enable input (EN) control the operation of the SN65LVDS150. When V_{CC} is below 1.5 V, or when EN is low, the device is in a low power disabled state and the MCO and LCRO differential outputs are in a high-impedance state. When V_{CC} is above 3 V and EN is high, the device and the two differential outputs are enabled and operating to specifications. The link clock reference output enable input (LCRO_EN) is used to turn off the LCRO output when it is not being used. A band select input (BSEL) is used to optimize the VCO performance as a function of M-clock frequencies and M multiplier that is being used: The f_{max} parameter in the switching characteristic table includes details on the MCO frequency and choices of BSEL and M.

BLOCK DIAGRAM


Frequency Multiplier Value Table (1)

MULTIPLIER	M1	M2	M3	M4	M5	RECOMMI (MI	
(m)					-	BSEL = 0	BSEL = 1
4	L	L	L	L	L	f _{IN} < 12.50	12.50 ≤ f _{IN}
Reserved	L	L	L	L	Н	NA	NA
6	L	L	L	Н	L	f _{IN} < 8.33	$8.33 \le f_{IN}$
Reserved	L	L	L	Н	Н	NA	NA
8	L	L	Н	L	L	f _{IN} < 12.50	12.50 ≤ f _{IN}
9	L	L	Н	L	Н	f _{IN} < 11.11	11.11 ≤ f _{IN}
10	L	L	Н	Н	L	f _{IN} < 10.00	10.00 ≤ f _{IN}
Reserved	L	L	Н	Н	Н	NA	NA
12	L	Н	L	L	L	f _{IN} < 8.3	8.3 ≤ f _{IN}
13	L	Н	L	L	Н	f _{IN} < 7.7	7.7 ≤ f _{IN}
14	L	Н	L	Н	L	f _{IN} < 7.14	7.14 ≤ f _{IN}
15	L	Н	L	Н	Н	f _{IN} < 6.67	6.67 ≤ f _{IN}
16	L	Н	Н	L	L	f _{IN} < 6.25	6.25 ≤ f _{IN}
17	L	Н	Н	L	Н	f _{IN} < 5.88	5.88 ≤ f _{IN}
18	L	Н	Н	Н	L	f _{IN} < 5.56	5.56 ≤ f _{IN}
19	L	Н	Н	Н	Н	f _{IN} < 5.26	5.26 ≤ f _{IN}
20	Н	L	L	L	L	f _{IN} = 5.00	5.00 ≤ f _{IN}
22	Н	L	L	L	Н	NA	5.00 ≤ f _{IN}
24	Н	L	L	Н	L	NA	5.00 ≤ f _{IN}
26	Н	L	L	Н	Н	NA	5.00 ≤ f _{IN}
28	Н	L	Н	L	L	NA	5.00 ≤ f _{IN}
30	Н	L	Н	L	Н	NA	5.00 ≤ f _{IN}
32	Н	L	Н	Н	L	NA	5.00 ≤ f _{IN}
34	Н	L	Н	Н	Н	NA	5.00 ≤ f _{IN}
36	Н	Н	L	L	L	NA	5.00 ≤ f _{IN}
38	Н	Н	L	L	Н	NA	5.00 ≤ f _{IN}
40	Н	Н	L	Н	L	NA	5.00 ≤ f _{IN}
Reserved	Н	Н	L	Н	Н	NA	NA
Reserved	Н	Н	Н	L	L	NA	NA
Reserved	Н	Н	Н	L	Н	NA	NA
Reserved	Н	Н	Н	Н	L	NA	NA
Reserved	Н	Н	Н	Н	Н	NA	NA

⁽¹⁾ H = high level, L= low level

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

Terminal Functions

TERMIN	NAL	1/0	TYPE	DECEDIPTION
NAME	NO.	I/O	ITPE	DESCRIPTION
BSEL	11	I	LVTTL	Band select. Used to optimize VCO performance for minimum M-clock jitter: See recommended f _{max} in the frequency multiplier value table.
CRI+, CRI-	2, 3	I	LVDS	Clock reference input. This is the reference clock signal for the PLL frequency multiplier.
EN	17	I	LVTTL	Enable input. Used to disable the device to a low power state. A high level input enables the device, a low level input disables the device.
GND	5, 12, 18, 22, 24	I	NA	Circuit ground
LCRO-, LCRO+	13, 14	0	LVDS	Link clock reference output. This is the data block synchronization clock signal from the PLL frequency multiplier.
LCRO_EN	16	I	LVTTL	LCRO enable. Used to turn off the LCRO outputs when they are not used. A high level input enables the LCRO output; a low level input disables the LCRO output.
LVO	15	0	LVTTL	Lock/valid output. This is signal required for proper Muxlt system operation. It is to be directly connected to the LVI inputs of SN65LVDS151 or SN65LVDS152 devices. It is used to inhibit the operation of those devices until after the PLL has stabilized. It remains at a low level following a reset until the PLL has become phase locked. A low to high-level transition indicates phase lock has occurred.
M1-M5	6–10	I	LVTTL	Multiplier value selection inputs. These inputs determine the frequency multiplication ratio M.
MCO-, MCO+	19, 20	0	LVDS	M-clock output. This is the high frequency multiplied clock output from the PLL frequency multiplier. It is used by the companion serializer or deserializer devices to synchronizes the transmission or reception of data
NC	21, 23, 26–28		NA	These pins are not connected and may be left open.
V _{CC}	1, 25		NA	Supply voltage
V _T	4		NA	Voltage reference. A $V_{\rm CC}/2$ reference supplied for the unused CRI input when operated in a single-ended mode.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

			UNIT
V_{CC}	Supply voltage range ⁽²⁾		−0.5 V to 4 V
		EN, BSEL, LCRO_EN, or M1-M5 inputs	–0.5 V to 6 V
	Voltage range	CRI input	–0.5 V to 4 V
		LCRO±, MCO± outputs	–0.5 V to 4 V
		Human body model (CRI±, LCRO±, MCO±,and GND(3)	±12 kV
	Electrostatic discharge	All pins	±2 kV
		Charged-device model (all pins) ⁽⁴⁾	±500 V
	Continuous total power d	lissipation	See Dissipation Rating Table
T _{stg}	Storage temperature ran	-65°C to 150°C	
	Lead temperature 1,6 mr	260°C	

⁽¹⁾ Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ All voltages, except differential I/O bus voltages, are with respect to the network ground terminal.

⁽³⁾ Tested in accordance with JEDEC Standard 22, Test method A114-B.

⁽⁴⁾ Tested in accordance with JEDEC Standard 22, Test method C101.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ⁽¹⁾ ABOVE T _A = 25°C	T _A = 85°C POWER RATING
PW	1207 mW	9.6 mW/°C	628 mW

⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		3	3.3	3.6	V
V_{IH}	High-level input voltage	EN, BSEL, LCRO_EN, M1-M5	2			V
V_{IL}	Low-level input voltage	EIN, BSEL, LCRO_EIN, IVI I-IVIS			0.8	V
V _{ID}	Magnitude of differential input voltage	CRI	0.1		0.6	V
V _{IC}	Common-mode input voltage	CRI	$\frac{ V_{\text{ID}} }{2}$		$2.4 - \frac{ V_{ID} }{2}$	٧
T _A	Operating free-air temperature		40		V _{CC} - 0.8	°C

TIMING REQUIREMENTS

		MIN	TYP MAX	UNIT
t _{c(1)}	Input clock cycle time	20	200	ns
t _{w(1)}	High-level input clock pulse width duration	0.4 t _{c(1)}	0.6 t _{c(1)}	
f _(clock)	Input clock frequency, CRI	5	50	MHz

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
V _{IT+}	Positive-going differential inpu	ut threshold voltage	0 5 4 17 11 4			100	mV
V _{IT}	Negative-going differential inp	out threshold voltage	See Figure 1 and Table 1	-100			mV
V _{OD(SS)}	Steady-state differential output	ıt voltage magnitude	$R_L = 100 \Omega$, See Figure 3	247	340	454	mV
$\Delta V_{OD(SS)} $	Change in steady-state different magnitude between logic stat		V _{ID} = ±100 mV, See Figure 2 and Figure 3	-50		50	mV
V _{OC(SS)}	Steady-state common-mode	output voltage		1.125		1.375	V
$\Delta V_{OC(SS)}$	Change in steady-state communication voltage between logic states	non-mode output	See Figure 4	-50		50	mV
V _{OC(PP)}	Peak-to-peak change commo	n-mode output voltage			50	150	mV
V _{OH}	High-level output voltage (LV	O)	$I_{OH} = -8 \text{ mA}$	2.4			V
V _{OL}	Low-level output voltage (LVC	D)	I _{OL} = 8 mA			0.4	٧
V _(T)	Threshold reference bias voltage		–100 μA ≤ I _O ≤ 100 μA	$\frac{V_{CC}}{2} - 0.15$		$\frac{V_{CC}}{2} + 0.15$	V
	Supply current		Enabled, $R_L = 100 \Omega$, CRI ± open		25	70	mA
I _{CC}			Disabled		2.5	6	
	Innut ourrent (CDI innute)		V _I = 0	-20		-2	
l ₁	Input current (CRI inputs)		V _I = 2.4 V	-1.2			μA
I _(ID)	Differential input current (I _{IA} -	I _{IB}) (CRI inputs)	V _{IC} = 0.05 V or 2.35 V,V _{ID} = ±0.1 V	-2		2	μΑ
I _{I(OFF)}	Power-off input current (CRI i	nputs)	V _{CC} = 0 V, V _I = 3.6 V			20	μΑ
	High lavelinest somest	M1-M5, EN				20	
I _{IH}	High-level input current	BSEL, LCRO_EN	V _{IH} = 2 V	-10			μA
	Laurent Samuel aussauer	M1-M5, EN	V 00V			10	
I _{IL}	Low-level input current	BSEL, LCRO_EN	V _{IL} = 0.8 V	-20			μΑ
	Ob and almostic automate accomment	MOO LODO	V _{O+} or = V _{O-} = 0 V	-10		10	A
los	Short-circuit output current	MCO, LCRO	V _{OD} = 0 V	-10		10	mA
l _{OZ}	High-impedance output current MCO, LCRO		V _O = 0 V or V _{CC}	-5		5	μΑ
I _{O(OFF)}	Power-off output current		V _{CC} = 1.5 V , V _O = 3.6 V	-5		5	μΑ
Cı	Input capacitance (CRI inputs)	$V_{ID} = [(0.4\sin(4E6\pi t) = 0.5] \text{ V}$		3		pF

⁽¹⁾ All typical values are at T_A = 25°C and with V_{CC} = 3.3 V.

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	MCO output clock period jitter ⁽²⁾	р-р	EN = 1, BSEL = 1,		200		20
	MCO output clock period jitter -	rms	LCRO_EN = 1, M = 40,		20		ps
t _(lock)	Lock (stabilization time)(3)		f _I = 5 MHz		0.2	1	ms
t _{w(2)}	Multiplied clock output pulse wid	th		0.4t _{c(2)}		0.6t _{c(2)}	
t _r	Differential output signal rise time	e (MCO, LCRO)	$R_L = 100 \Omega$, $C_L = 10 pF$, See Figure 5	0.3	0.6	1.5	
t _f	Differential output signal fall time	(MCO, LCRO)	Geo rigulo o	0.3	0.6	1.5	ns
		f _I = 5 MHz, M = 4	$R_L = 100 \Omega$, $C_L = 10 pF$, See Figure 6	-2.5	0	2.5	ns
t _(OS)	CRI [↑] to MCO [↑] offset time	f _I = 10 MHz, M = 10		-1.5	0	1.5	
		f _I = 5 MHz, M = 40		-1.65	0	1.65	
		f _I = 5 MHz, M = 4	$R_L = 100 \Omega$, $C_L = 10 pF$, See Figure 6	0.5	2.5	6	
t _d	MCO↑ before LCRO↑ , time delay	f _I = 10 MHz, M = 10		0.5	2.5	6	ns
	dolay	f _I = 5 MHz, M = 40		0.5	2.5	4.5	
	Maximum MCO output frequency		BSEL =1, M = 4, 6	200			MHz
4			BSEL =1, M ≠ 4, 6	400			
f _{max}			BSEL =0, M = 4, 6	50			
			BSEL =0, M ≠ 4, 6	100			

All typical values are at T_A = 25°C and with V_{CC} = 3.3 V.
 Output clock jitter is the change in the output clock period from one cycle to the next cycle observed over 10,000 cycles with a source having less than 10 psec jitter rms.
 Lock time is measured from the application of the clock reference input signal to the assertion of a high-level lock/valid output.

PARAMETER MEASUREMENT INFORMATION

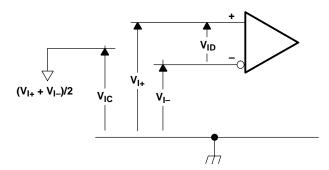


Figure 1. Receiver Input Voltage Definitions

Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages

APPLIED VOLTAGES		RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE
V _(IA)	V _(IB)	V _{ID}	V _{IC}
1.25 V	1.15 V	100 mV	1.2 V
1.15 V	1.25 V	–100 mV	1.2 V
2.4 V	2.3 V	100 mV	2.35 V
2.3 V	2.4 V	–100 mV	2.35 V
0.1 V	0 V	100 mV	0.05 V
0 V	0.1 V	–100 mV	0.05 V
1.5 V	0.9 V	600 mV	1.2 V
0.9 V	1.5 V	–600 mV	1.2 V
2.4 V	1.8 V	600 mV	2.1 V
1.8 V	2.4 V	–600 mV	2.1 V
0.6 V	0 V	600 mV	0.3 V
0 V	0.6 V	–600 mV	0.3 V

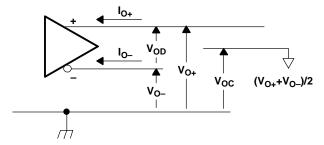
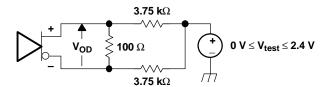
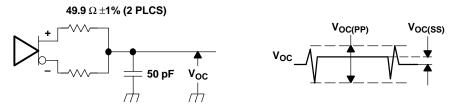
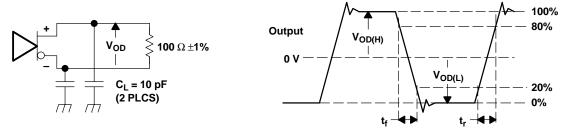


Figure 2. Driver Output Voltage and Current Definitions


Figure 3. V_{OD} Test Circuit

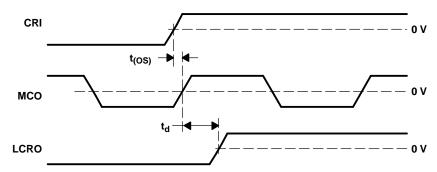
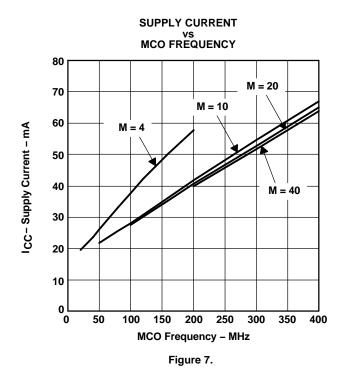

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_r \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, Pulse width = 500 \pm 10 ns . C_L includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. The measurement of $V_{OC(PP)}$ is made on test equipment with a -3 dB bandwidth of at least 5 GHz.

Figure 4. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, Pulse width = 10 \pm 0.2 ns . C_L includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.


Figure 5. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

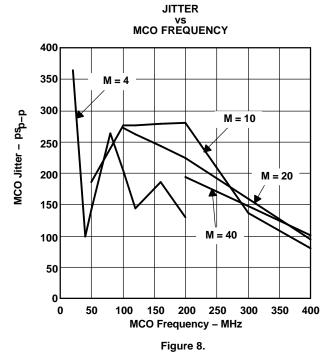
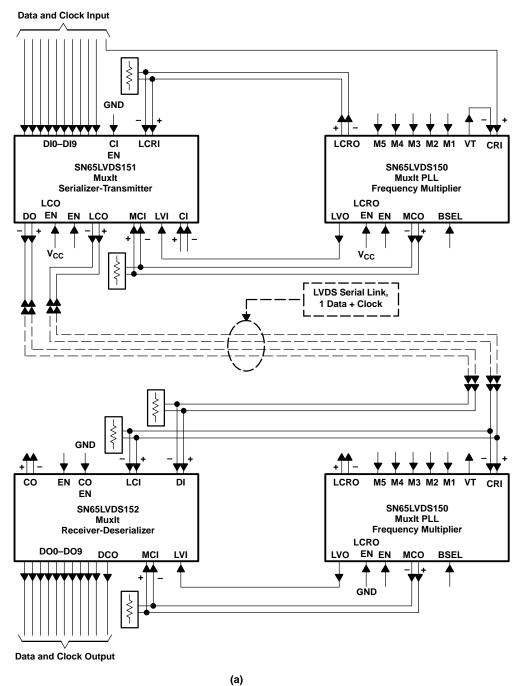


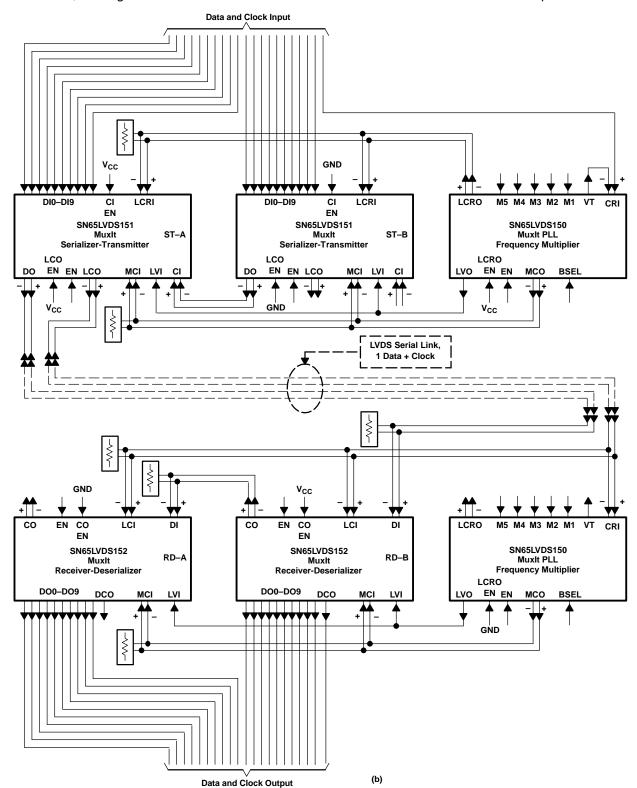
Figure 6. Output Timing Waveform Definitions

TYPICAL CHARACTERISTICS

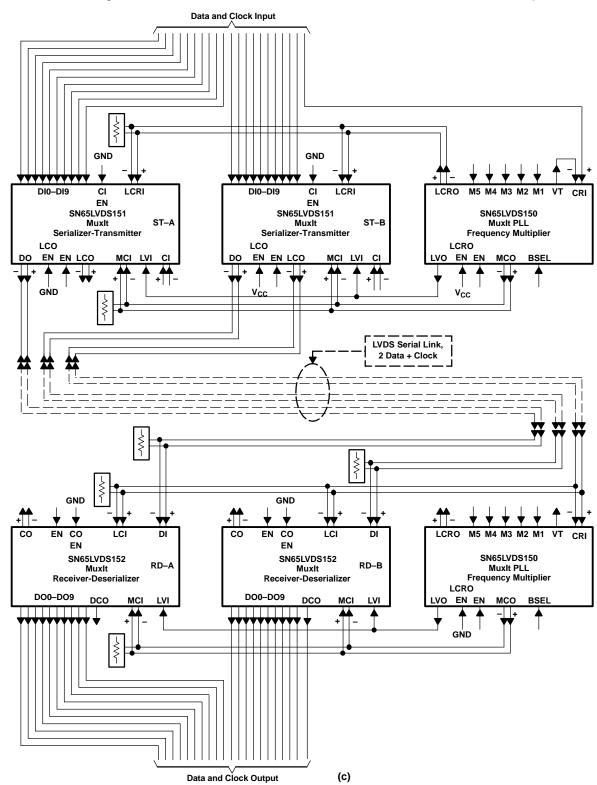


TYPICAL CHARACTERISTICS (continued)

BASIC APPLICATIONS EXAMPLES


Parallel data path width between 4 and 10 bits, only one LVDS data link required.

TYPICAL CHARACTERISTICS (continued)


Parallel data path width between 11 and 20 bits, aggregate data rate low enough to allow transmission over one LVDS data link, sharing of PLL-FM between serializer-transmitter and receiver-deserializer chips at each end.

TYPICAL CHARACTERISTICS (continued)

Parallel data path width between 11 and 20 bits, aggregate data rate requires transmission over two separate LVDS data links, sharing of PLL-FM between serializer-transceiver and receiver-deserializer chips at each end.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated