

# Inductors

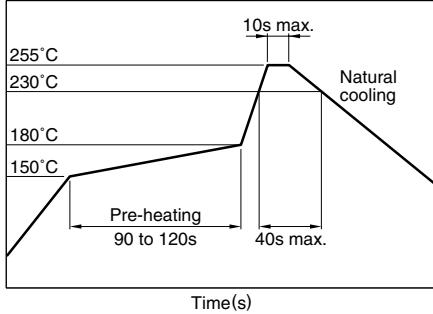
## For Power Line SMD

## NLFC Series NLFC2016 Type

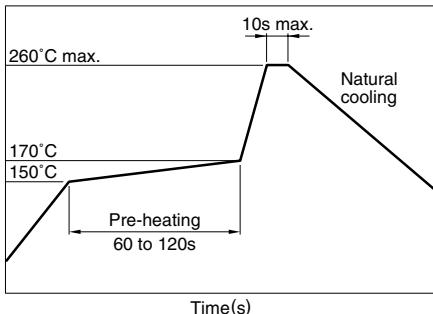
### FEATURES

- The product has good heat durability that withstands lead-free compatible reflow soldering conditions.
- Lead-free material is used for the plating on the terminal.
- The NLFC series features magnetic shielding and is recommended for power supply line applications.
- This product conforms to the standards that are slated to be introduced under the RoHS Directive.

### APPLICATIONS


- Audio-visual equipment including TVs, VCRs and digital cameras.
- Electronic equipment used in communication infrastructures including xDSL and mobile base stations.
- Other electronic equipment including HDDs and ODDs.

### SPECIFICATIONS


|                             |                                                   |
|-----------------------------|---------------------------------------------------|
| Operating temperature range | -40 to +85°C<br>[Including self-temperature rise] |
| Storage temperature range   | -40 to +85°C                                      |

### RECOMMENDED SOLDERING CONDITIONS

#### REFLOW SOLDERING



#### FLOW SOLDERING



### IRON SOLDERING

|                              |                                                                                                                                                |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Tip temperature              | 300 to 350°C                                                                                                                                   |
| Heating time                 | 3 seconds/soldering                                                                                                                            |
| Soldering rod specifications | Output: 30W Tip diameter: 1mm                                                                                                                  |
| •                            | Based on the above conditions, use a maximum product temperature of 260°C and a maximum accumulated heating time of 10 seconds as a guideline. |
| •                            | Please contact us for details.                                                                                                                 |

### PRODUCT IDENTIFICATION

|      |        |     |     |     |     |
|------|--------|-----|-----|-----|-----|
| NLFC | 201614 | T-  | 2R2 | M   | -PF |
| (1)  | (2)    | (3) | (4) | (5) | (6) |

(1)Series name

(2)Dimensions

201614 2.1×1.6×1.4mm (L×W×T)

(3)Packaging style

T Taping (reel)

(4)Inductance value

|     |            |
|-----|------------|
| 1R0 | 1 $\mu$ H  |
| 220 | 22 $\mu$ H |

(5)Inductance tolerance

|   |            |
|---|------------|
| K | $\pm 10\%$ |
| M | $\pm 20\%$ |

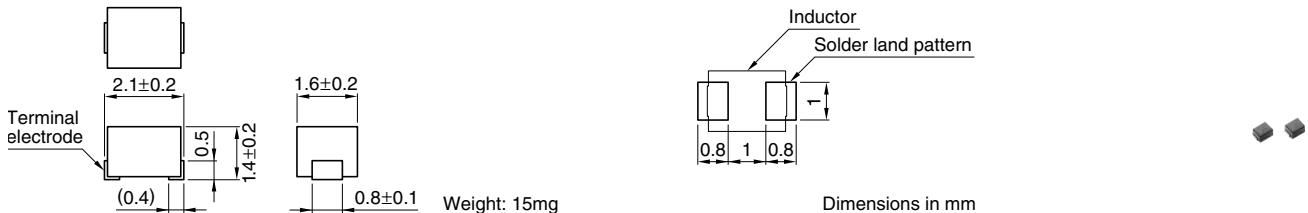
(6)Lead-free compatible product

|    |                              |
|----|------------------------------|
| PF | Lead-free compatible product |
|----|------------------------------|

### PACKAGING STYLE AND QUANTITIES

|                 |                  |
|-----------------|------------------|
| Packaging style | Quantity         |
| Taping          | 2000 pieces/reel |

- Regarding RoHS Directive conformity: This claim is based on the individual judgment made by TDK Corporation that this product conforms to EU Directive 2002/95/EC. This does not constitute a guarantee that the product conforms to all laws and regulations based on the RoHS Directive enacted in individual EU member states.


- All specifications are subject to change without notice.

# Inductors

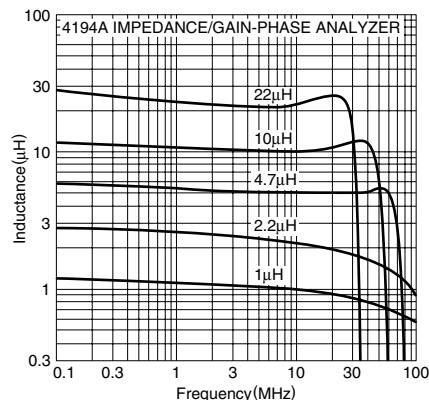
For Power Line  
SMD

## NLFC Series NLFC2016 Type

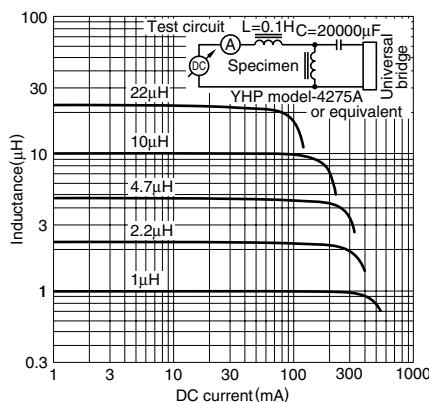
### SHAPES AND DIMENSIONS/RECOMMENDED PC BOARD PATTERN



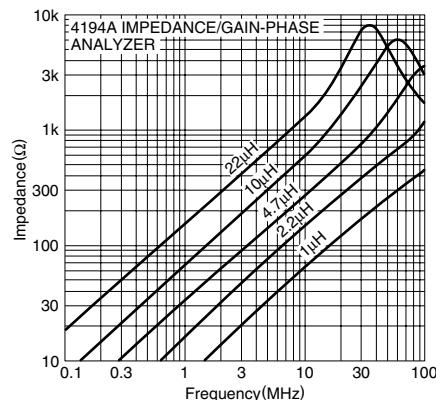
### ELECTRICAL CHARACTERISTICS


| Inductance<br>( $\mu$ H) | Inductance<br>tolerance | Q<br>ref. | Test frequency<br>L, Q (MHz) | Self-resonant frequency<br>(MHz)min. | DC resistance<br>( $\Omega$ ) $\pm$ 30% | Rated current*<br>(mA)max. | Part No.            |
|--------------------------|-------------------------|-----------|------------------------------|--------------------------------------|-----------------------------------------|----------------------------|---------------------|
| 1                        | $\pm$ 20%               | 5         | 7.96                         | 100                                  | 0.16                                    | 300                        | NLFC201614T-1R0M-PF |
| 2.2                      | $\pm$ 20%               | 5         | 7.96                         | 80                                   | 0.23                                    | 240                        | NLFC201614T-2R2M-PF |
| 4.7                      | $\pm$ 20%               | 5         | 7.96                         | 45                                   | 0.4                                     | 150                        | NLFC201614T-4R7M-PF |
| 10                       | $\pm$ 10%               | 10        | 2.52                         | 32                                   | 0.7                                     | 120                        | NLFC201614T-100K-PF |
| 22                       | $\pm$ 10%               | 10        | 2.52                         | 16                                   | 1.7                                     | 75                         | NLFC201614T-220K-PF |

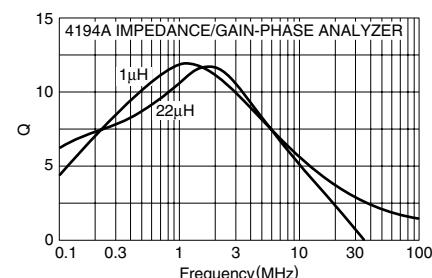
\* Rated current: Value obtained when current flows and the temperature has risen to 20°C or when DC current flows and the initial value of inductance has fallen by 10%, whichever is smaller.


- Test equipment L, Q: YHP4194A IMPEDANCE ANALYZER+YHP16085A+YHP16093B+TF-1, or equivalent
- SRF: HP8753C NETWORK ANALYZER ( $Z_{in}=Z_{out}=50\Omega$ ), or equivalent
- Rdc: MATSUSHITA VP-2941A DIGITAL MILLIOHM METER, or equivalent

### TYPICAL ELECTRICAL CHARACTERISTICS


#### INDUCTANCE vs. FREQUENCY CHARACTERISTICS




#### INDUCTANCE CHANGE vs. DC SUPERPOSITION CHARACTERISTICS



#### IMPEDANCE vs. FREQUENCY CHARACTERISTICS



#### Q vs. FREQUENCY CHARACTERISTICS

