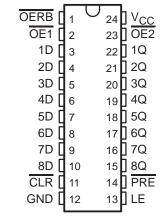
SDAS227A - JUNE 1984 - REVISED JANUARY 1995

- 3-State I/O-Type Read-Back Inputs
- Bus-Structured Pinout
- Choice of True or Inverting Logic
  - SN74ALS666 . . . True Outputs
  - SN74ALS667 . . . Inverted Outputs
- Preset and Clear Inputs
- Package Options Include Plastic Small-Outline (DW) Packages and Standard Plastic (NT) 300-mil DIPs

#### description

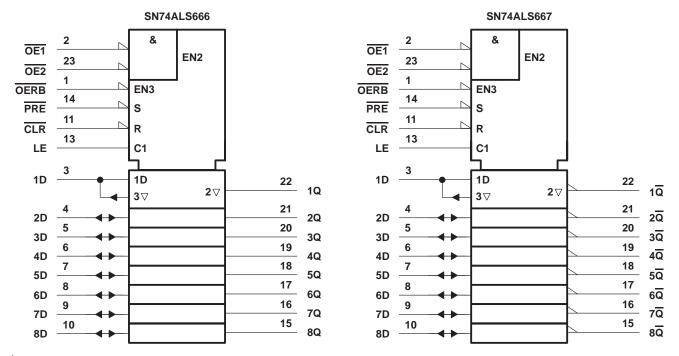

These 8-bit D-type transparent latches are designed specifically for storing the contents of the input data bus, plus reading back the stored data onto the input data bus. In addition, they provide a 3-state buffer-type output and are easily utilized in bus-structured applications.

While the latch enable (LE) is high, the Q outputs of the SN74ALS666 follow the data (D) inputs. The  $\overline{Q}$  outputs of the SN74ALS667 provide the inverse of the data applied to its D inputs. The Q or  $\overline{Q}$  output of both devices is in the high-impedance state if either output-enable ( $\overline{OE1}$  or  $\overline{OE2}$ ) input is at a high logic level.

Read back is provided through the read-back control (OERB) input. When OERB is taken low, the data present at the output of the data latches passes back onto the input data bus. When OERB is taken high, the output of the data latches is isolated from the D inputs. OERB does not affect the internal operation of the latches; however, caution should be exercised to avoid a bus conflict.

The SN74ALS666 and SN74ALS667 are characterized for operation from 0°C to 70°C.

# SN74ALS666 . . . DW OR NT PACKAGE (TOP VIEW)

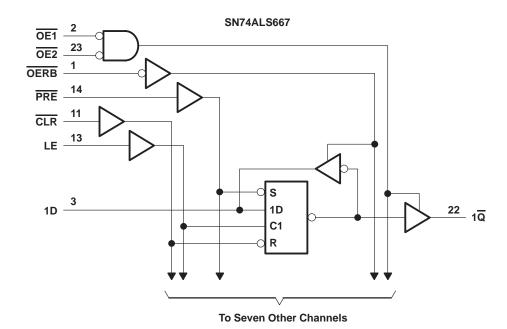



# SN74ALS667 . . . DW OR NT PACKAGE (TOP VIEW)

|        |    | - |    |      |
|--------|----|---|----|------|
| OERB [ | 1  | U | 24 | Vcc  |
| OE1    | 2  |   | 23 | OE2  |
| 1D [   | 3  |   | 22 | 1Q   |
| 2D [   | 4  |   | 21 | 2Q   |
| 3D [   | 5  |   | 20 | ] 3Q |
| 4D [   | 6  |   | 19 | ] 4Q |
| 5D [   | 7  |   | 18 | ] 5Q |
| 6D [   | 8  |   | 17 | 6Q   |
| 7D [   | 9  |   | 16 | ] 7Q |
| 8D [   | 10 |   | 15 | ] 8Q |
| CLR [  | 11 |   | 14 | PRE  |
| GND [  | 12 |   | 13 | LE   |
|        |    |   |    | ı    |

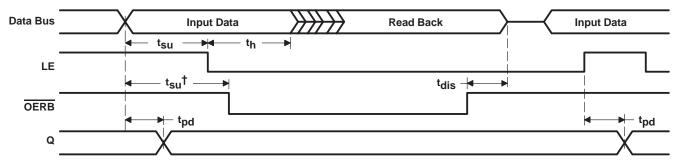
SDAS227A - JUNE 1984 - REVISED JANUARY 1995

## logic symbols†




<sup>†</sup> These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

# logic diagrams (positive logic)




To Seven Other Channels



SDAS227A - JUNE 1984 - REVISED JANUARY 1995

### timing diagram



 $\overline{\text{CLR}} = \text{H}, \overline{\text{PRE}} = \text{H}, \overline{\text{OE1}} = \text{L}, \overline{\text{OE2}} = \text{L}.$ 

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

| Supply voltage, V <sub>CC</sub>                                               | 7 V            |
|-------------------------------------------------------------------------------|----------------|
| Input voltage, V <sub>I</sub> (all inputs except D inputs)                    | 7 V            |
| Voltage applied to D inputs and to disabled 3-state outputs                   | 5.5 V          |
| Operating free-air temperature range, T <sub>A</sub> : SN74ALS666, SN74ALS667 | 0°C to 70°C    |
| Storage temperature range                                                     | -65°C to 150°C |

<sup>‡</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

## recommended operating conditions

|                 |                                |                   |     | 74ALS6 |      | UNIT |  |
|-----------------|--------------------------------|-------------------|-----|--------|------|------|--|
|                 |                                |                   | MIN | NOM    | MAX  |      |  |
| VCC             | Supply voltage                 |                   | 4.5 | 5      | 5.5  | V    |  |
| VIH             | High-level input voltage       |                   | 2   |        |      | V    |  |
| V <sub>IL</sub> | Low-level input voltage        |                   |     |        | 0.8  | V    |  |
| lau             | High level output ourrent      | Q                 |     |        | -2.6 | mA   |  |
| IOH H           | High-level output current      | D                 |     |        | -0.4 |      |  |
| lai             | Low level output ourrent       | Q                 |     |        | 24   | mA   |  |
| lOL             | Low-level output current       | D                 |     |        | 8    |      |  |
|                 |                                | LE high           | 10  |        |      | ns   |  |
| t <sub>W</sub>  | Pulse duration                 | CLR low           | 10  |        |      |      |  |
|                 |                                | PRE low           | 10  |        |      |      |  |
|                 | Catua tima                     | Data before LE↓   | 10  |        |      |      |  |
| t <sub>su</sub> | Setup time                     | Data before OERB↓ | 10  |        |      | ns   |  |
| t <sub>h</sub>  | Hold time, data after LE↓      |                   | 5   |        |      | ns   |  |
| TA              | Operating free-air temperature | -                 | 0   |        | 70   | °C   |  |

<sup>†</sup> This setup time ensures the read-back circuit does not create a conflict on the input data bus.

SDAS227A - JUNE 1984 - REVISED JANUARY 1995

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |                                       | TEST CON                                       |                            | SN74ALS666<br>SN74ALS667 |                  |      |       |  |
|-----------|---------------------------------------|------------------------------------------------|----------------------------|--------------------------|------------------|------|-------|--|
|           |                                       |                                                |                            | MIN                      | TYP <sup>†</sup> | MAX  |       |  |
| ٧ıK       |                                       | $V_{CC} = 4.5 V,$                              | $I_1 = -18 \text{ mA}$     |                          |                  | -1.2 | V     |  |
|           | All outputs                           | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$    | $I_{OH} = -0.4 \text{ mA}$ | V <sub>CC</sub> -2       | 2                |      | V     |  |
| VOH       | Q or Q                                | $V_{CC} = 4.5 V,$                              | $I_{OH} = -2.6 \text{ mA}$ | 2.4                      | 3.2              |      | V     |  |
|           | D inputs                              | V <sub>CC</sub> = 4.5 V                        | I <sub>OL</sub> = 4 mA     |                          | 0.25             | 0.4  |       |  |
| \/o:      | Diliputs                              | VCC = 4.5 V                                    | $I_{OL} = 8 \text{ mA}$    |                          | 0.35             | 0.5  | V     |  |
| VOL       | Q or Q                                | V <sub>CC</sub> = 4.5 V                        | I <sub>OL</sub> = 12 mA    |                          | 0.25             | 0.4  | V     |  |
|           | Q or Q                                | VCC = 4.5 V                                    | $I_{OL} = 24 \text{ mA}$   |                          | 0.35             | 0.5  |       |  |
| lozh      | Q or Q                                | $V_{CC} = 5.5 V$ ,                             | $V_0 = 2.7 \text{ V}$      |                          |                  | 20   | μΑ    |  |
| lozL      | Q or Q                                | $V_{CC} = 5.5 V$ ,                             | V <sub>O</sub> = 0.4 V     |                          |                  | -20  | μΑ    |  |
| 1.        | D inputs                              | V <sub>CC</sub> = 5.5 V                        | V <sub>I</sub> = 5.5 V     |                          |                  | 0.1  | mA    |  |
| 11        | All others                            | v <sub>C</sub> C = 3.3 v                       | V <sub>I</sub> = 7 V       |                          |                  | 0.1  | ША    |  |
| 1         | D inputs‡                             |                                                | V <sub>I</sub> = 2.7 V     |                          |                  | 20   | μΑ    |  |
| IН        | All others                            | $V_{CC} = 5.5 V,$                              | V   = 2.7 V                |                          |                  | 20   | μΑ    |  |
| 1         | D inputs‡                             | V <sub>CC</sub> = 5.5 V,                       | V <sub>I</sub> = 0.4 V     | 4 V                      | -0.1             | mA   |       |  |
| IIL       | All others                            | VCC = 3.3 V,                                   | V  = 0.4 V                 |                          |                  | -0.1 | ША    |  |
| ΙΟ§       |                                       | $V_{CC} = 5.5 V,$                              | $V_0 = 2.25 \text{ V}$     | -30                      |                  | -112 | mA    |  |
|           |                                       | .,,                                            | Q outputs high             |                          | 25               | 50   |       |  |
|           | SN74ALS666                            | <u>V<sub>CC</sub> =</u> 5.5 V,<br>OERB high    | Q outputs low              |                          | 40               | 73   |       |  |
| loo       |                                       | OERB High                                      | Q outputs disabled         |                          | 30               | 55   | mA    |  |
| ICC       |                                       | 74ALS667 V <sub>CC</sub> = 5.5 V,<br>OERB high | Q outputs high             |                          | 25               | 50   | 111/4 |  |
|           | SN74ALS667                            |                                                | Q outputs low              |                          | 45               | 79   |       |  |
|           | J J J J J J J J J J J J J J J J J J J | Q outputs disabled                             |                            | 30                       | 60               |      |       |  |

<sup>†</sup> All typical values are at  $V_{CC}$  = 5 V,  $T_A$  = 25°C. ‡ For I/O ports (Q<sub>A</sub> through Q<sub>H</sub>), the parameters I<sub>IH</sub> and I<sub>IL</sub> include the off-state output current.

<sup>§</sup> The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS227A - JUNE 1984 - REVISED JANUARY 1995

## switching characteristics (see Figure 1)

| PARAMETER          | FROM     | то       | V <sub>CC</sub> = 4.5<br>C <sub>L</sub> = 50 pF<br>T <sub>A</sub> = MIN t | UNIT |       |
|--------------------|----------|----------|---------------------------------------------------------------------------|------|-------|
|                    | (INPUT)  | (OUTPUT) | SN74A                                                                     |      |       |
|                    |          |          | MIN                                                                       | MAX  |       |
| t <sub>PLH</sub>   | D        |          | 3                                                                         | 14   | ns    |
| t <sub>PHL</sub>   | ט        | Q        | 4                                                                         | 18   | 115   |
| t <sub>PLH</sub>   | LE       |          | 6                                                                         | 21   | ns    |
| <sup>t</sup> PHL   | LL       | Q        | 8                                                                         | 27   | 115   |
| 4                  | CLR      | Q        | 9                                                                         | 29   | ns    |
| t <sub>PHL</sub>   |          | D        | 11                                                                        | 32   | ] 115 |
| t <sub>PLH</sub>   | PRE      | Q        | 7                                                                         | 22   | ns    |
| t <sub>PHL</sub>   | PRE      | D        | 9                                                                         | 28   | 115   |
| t <sub>en</sub> ‡  | OERB     | D        | 4                                                                         | 21   |       |
|                    | OE1, OE2 | Q        | 4                                                                         | 21   | ns    |
| t <sub>dis</sub> § | OERB     | D        | 1                                                                         | 14   | 200   |
|                    | OE1, OE2 | Q        | 1                                                                         | 14   | ns    |

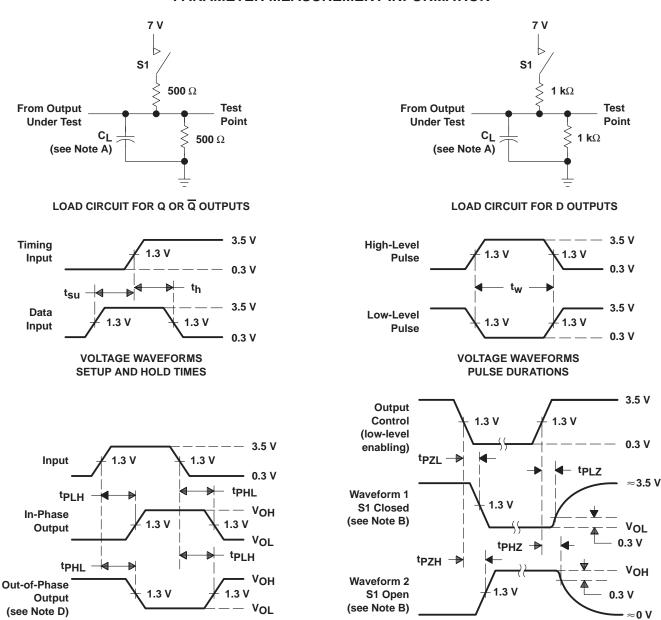
<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

# switching characteristics (see Figure 1)

| PARAMETER                               | FROM     | то       | V <sub>CC</sub> = 4.5<br>C <sub>L</sub> = 50 pF<br>T <sub>A</sub> = MIN to | UNIT |     |
|-----------------------------------------|----------|----------|----------------------------------------------------------------------------|------|-----|
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (INPUT)  | (OUTPUT) | SN74A                                                                      |      |     |
|                                         |          |          | MIN                                                                        | MAX  |     |
| t <sub>PLH</sub>                        | D        | Q        | 6                                                                          | 20   | ns  |
| <sup>t</sup> PHL                        | U        | Q        | 4                                                                          | 15   | 113 |
| t <sub>PLH</sub>                        | LE       | ā        | 9                                                                          | 28   | ns  |
| t <sub>PHL</sub>                        | LL       | Q        | 7                                                                          | 22   | 115 |
| 4                                       | CLR      | ā        | 7                                                                          | 24   | ns  |
| <sup>t</sup> PHL                        |          | D        | 8                                                                          | 26   |     |
| t <sub>PLH</sub>                        | PRE      | Q        | 8                                                                          | 25   | ns  |
| t <sub>PHL</sub>                        | PRE      | D        | 9                                                                          | 28   | 115 |
| . +                                     | OERB     | D        | 4                                                                          | 21   |     |
| t <sub>en</sub> ‡                       | OE1, OE2 | Q        | 4                                                                          | 21   | ns  |
| t <sub>dis</sub> §                      | OERB     | D        | 1                                                                          | 14   | 20  |
|                                         | OE1, OE2 | Q        | 1                                                                          | 14   | ns  |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.




 $t_{en} = t_{PZH} \text{ or } t_{PZL}$   $t_{dis} = t_{PHZ} \text{ or } t_{PLZ}$ 

 $t_{en} = t_{PZH} \text{ or } t_{PZL}$   $t_{dis} = t_{PHZ} \text{ or } t_{PLZ}$ 

**VOLTAGE WAVEFORMS** 

**ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS** 

#### PARAMETER MEASUREMENT INFORMATION



NOTES: A.  $C_L$  includes probe and jig capacitance.

**VOLTAGE WAVEFORMS** 

PROPAGATION DELAY TIMES

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses have the following characteristics: PRR  $\leq$  1 MHz,  $t_r = t_f = 2$  ns, duty cycle = 50%.
- D. When measuring propagation delay times of 3-state outputs, switch S1 is open.

Figure 1. Load Circuits and Voltage Waveforms









### **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------|
| SN74ALS666DW     | ACTIVE                | SOIC            | DW                 | 24   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS666DWE4   | ACTIVE                | SOIC            | DW                 | 24   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS666DWR    | ACTIVE                | SOIC            | DW                 | 24   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS666DWRE4  | ACTIVE                | SOIC            | DW                 | 24   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS666NSR    | ACTIVE                | SO              | NS                 | 24   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS666NSRE4  | ACTIVE                | SO              | NS                 | 24   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS666NT     | ACTIVE                | PDIP            | NT                 | 24   | 15             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type           |
| SN74ALS666NTE4   | ACTIVE                | PDIP            | NT                 | 24   | 15             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type           |
| SN74ALS667DW     | ACTIVE                | SOIC            | DW                 | 24   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS667DWE4   | ACTIVE                | SOIC            | DW                 | 24   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS667DWR    | ACTIVE                | SOIC            | DW                 | 24   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS667DWRE4  | ACTIVE                | SOIC            | DW                 | 24   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS667NSR    | ACTIVE                | SO              | NS                 | 24   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS667NSRE4  | ACTIVE                | SO              | NS                 | 24   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALS667NT     | ACTIVE                | PDIP            | NT                 | 24   | 15             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type           |
| SN74ALS667NT3    | OBSOLETE              | PDIP            | NT                 | 24   |                | TBD                       | Call TI          | Call TI                      |
| SN74ALS667NTE4   | ACTIVE                | PDIP            | NT                 | 24   | 15             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type           |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

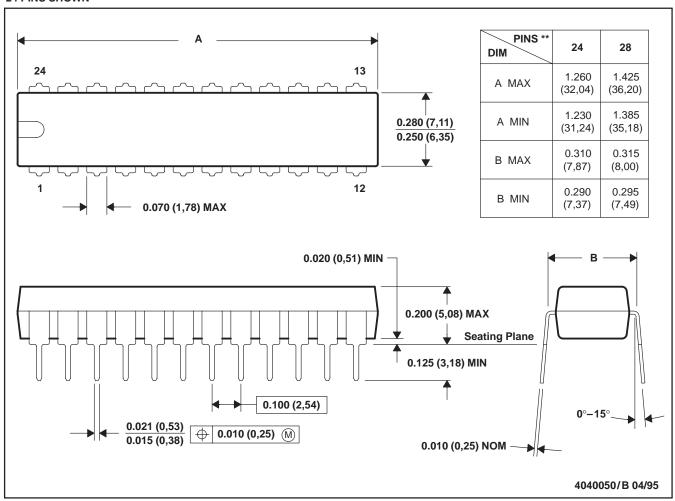
<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.



### PACKAGE OPTION ADDENDUM

12-Jan-2006

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

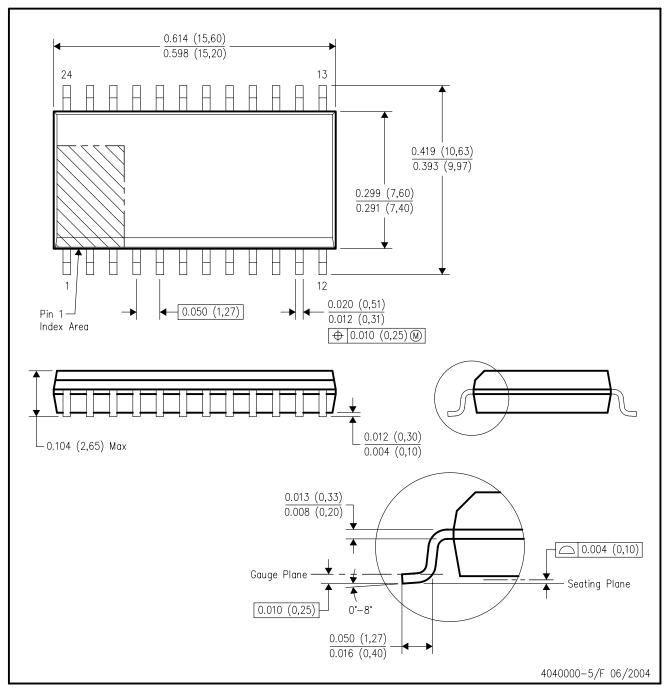

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

### NT (R-PDIP-T\*\*)

#### PLASTIC DUAL-IN-LINE PACKAGE

#### **24 PINS SHOWN**




NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

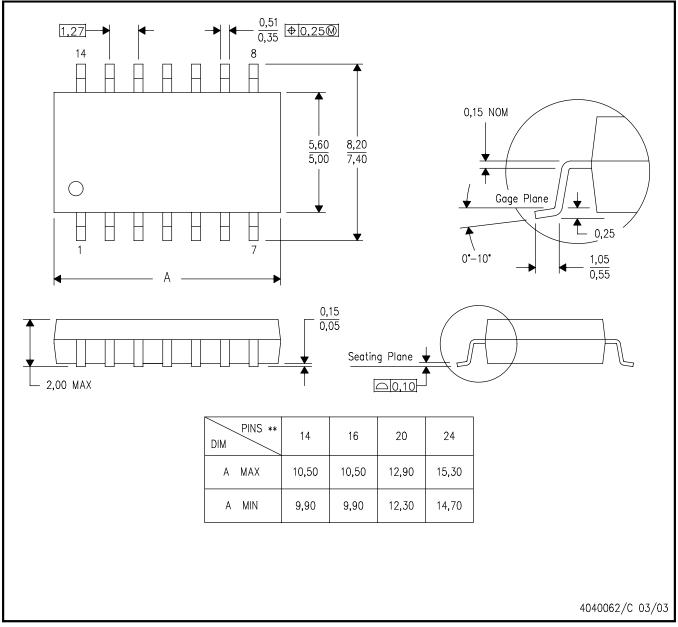
# DW (R-PDSO-G24)

# PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.




## **MECHANICAL DATA**

# NS (R-PDSO-G\*\*)

# 14-PINS SHOWN

### PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated