# **Power MOSFET**

# 7.0 A, 20 V, Common Drain, Dual N-Channel, TSSOP-8

#### **Features**

- Low R<sub>DS(on)</sub>
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- 3 mm Wide TSSOP-8 Surface Mount Package
- High Speed, Soft Recovery Diode
- TSSOP-8 Mounting Information Provided
- Pb-Free Package is Available

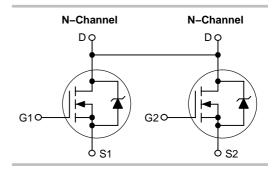
# **Applications**

• Battery Protection Circuits

# MAXIMUM RATINGS (T<sub>C</sub> = 25°C unless otherwise noted)

| Rating                                                                                                                     | Symbol                                              | Value            | Unit |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|------|
| Drain-to-Source Voltage                                                                                                    | V <sub>DSS</sub>                                    | 20               | Vdc  |
| Gate-to-Source Voltage - Continuous                                                                                        | V <sub>GS</sub>                                     | ±12              | Vdc  |
| Drain Current  - Continuous @ T <sub>A</sub> 25°C (Note 1)  - Continuous @ T <sub>A</sub> 70°C (Note 1)  - Pulsed (Note 3) | I <sub>D</sub><br>I <sub>D</sub><br>I <sub>DM</sub> | 7.0<br>5.6<br>20 | Adc  |
| Total Power Dissipation @ T <sub>A</sub> 25°C (Note 1)                                                                     | P <sub>D</sub>                                      | 1.81             | W    |
| Drain Current  - Continuous @ T <sub>A</sub> 25°C (Note 2)  - Continuous @ T <sub>A</sub> 70°C (Note 2)  - Pulsed (Note 3) | I <sub>D</sub><br>I <sub>D</sub>                    | 6.2<br>4.9<br>18 | Adc  |
| Total Power Dissipation @ T <sub>A</sub> 25°C (Note 2)                                                                     | $P_{D}$                                             | 1.39             | W    |
| Operating and Storage Temperature Range                                                                                    | T <sub>J</sub> , T <sub>stg</sub>                   | -55 to<br>+150   | ç    |
| Thermal Resistance – Junction–to–Ambient (Note 1) Junction–to–Ambient (Note 2)                                             | $R_{\theta JA}$                                     | 69<br>90         | °C/W |
| Maximum Lead Temperature for Soldering Purposes for 10 seconds                                                             | TL                                                  | 260              | ç    |

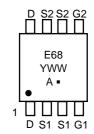
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz. Cu 0.06" thick single sided), t ≤ 10 sec.
- 2. Mounted onto a 2" square FR-4 Board
  (1 in sq, 2 oz. Cu 0.06" thick single sided), Steady State.
- 3. Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle = 2%.



### ON Semiconductor®

#### http://onsemi.com


| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> TYP | I <sub>D</sub> MAX |  |
|----------------------|-------------------------|--------------------|--|
| 20 V                 | 17 mΩ @ 4.5 V           | 7.0 A              |  |



# MARKING DIAGRAM & PIN ASSIGNMENT



**PLASTIC** 

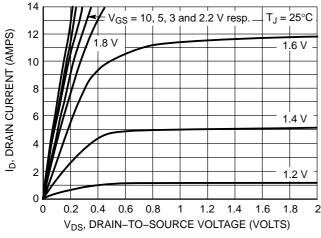


E68 = Specific Device Code A = Assembly Location

Y = Assembly Y = Year

WW = Work Week= Pb-Free Package

#### ORDERING INFORMATION


| Device       | Package              | Shipping <sup>†</sup> |
|--------------|----------------------|-----------------------|
| NTQD6968N    | TSSOP-8              | 100 Units / Rail      |
| NTQD6968NR2  | TSSOP-8              | 4000/Tape & Reel      |
| NTQD6968NR2G | TSSOP-8<br>(Pb-Free) | 4000/Tape & Reel      |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# **ELECTRICAL CHARACTERISTICS** ( $T_C = 25$ °C unless otherwise noted)

| Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |                      | Min         | Тур                     | Max                     | Unit         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------|-------------|-------------------------|-------------------------|--------------|
| OFF CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | •                    |             |                         | •                       | •            |
| Drain-to-Source Breakdown Voltage (V <sub>GS</sub> = 0 Vdc, I <sub>D</sub> = 250 µAdc) Temperature Coefficient (Positive)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           | V <sub>(BR)DSS</sub> | 20<br>-     | _<br>16                 |                         | Vdc<br>mV/°C |
| Zero Gate Voltage Collector Current<br>$(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 16 \text{ Vdc}, T_J = (V_{DS}$ |                                                                                           | I <sub>DSS</sub>     |             | -<br>-                  | 1.0<br>10               | μAdc         |
| Gate-Body Leakage Current (V <sub>GS</sub> = ±12 Vdc, V <sub>DS</sub> = 0 Vdc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |                      | ı           | _                       | ±100                    | nAdc         |
| ON CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                      |             |                         |                         |              |
| Gate Threshold Voltage ( $V_{DS} = V_{GS}, I_{D} = 250 \mu Adc$ ) Temperature Coefficient (Negative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           | V <sub>GS(th)</sub>  | 0.6<br>-    | 0.75<br>3.0             | 1.2                     | Vdc<br>mV/°C |
| Static Drain-to-Source On-State Resistance (V <sub>GS</sub> = 4.5 Vdc, I <sub>D</sub> = 7.0 Adc) (V <sub>GS</sub> = 2.5 Vdc, I <sub>D</sub> = 7.0 Adc) (V <sub>GS</sub> = 2.5 Vdc, I <sub>D</sub> = 3.5 Adc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | R <sub>DS(on)</sub>  | -<br>-<br>- | 0.017<br>0.022<br>0.022 | 0.022<br>0.030<br>0.030 | Ω            |
| Forward Transconductance (V <sub>DS</sub> = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 Vdc, I <sub>D</sub> = 7.0 Adc)                                                          | 9FS                  | _           | 19.2                    | -                       | Mhos         |
| DYNAMIC CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                      |             |                         |                         |              |
| Input Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | C <sub>iss</sub>     | -           | 630                     | _                       | pF           |
| Output Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$                  | C <sub>oss</sub>     | ı           | 260                     | 1                       |              |
| Transfer Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                         | C <sub>rss</sub>     | ı           | 95                      | -                       |              |
| SWITCHING CHARACTERISTICS (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Notes 4 and 5)                                                                            |                      |             |                         |                         |              |
| Turn-On Delay Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           | t <sub>d(on)</sub>   | _           | 8.0                     | -                       | ns           |
| Rise Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(V_{DD} = 16 \text{ Vdc}, I_D = 7.0 \text{ Adc},$                                        | t <sub>r</sub>       | -           | 25                      | -                       |              |
| Turn-Off Delay Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{GS} = 4.5 \text{ Vdc}, R_G = 6.0 \Omega$                                              | t <sub>d(off)</sub>  | -           | 60                      | -                       |              |
| Fall Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           | t <sub>f</sub>       | -           | 65                      | -                       |              |
| Gate Charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(V_{DS} = 16 \text{ Vdc},$                                                               | Q <sub>tot</sub>     | -           | 12.5                    | 17                      | nC           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{GS} = 4.5 \text{ Vdc},$<br>$I_{D} = 7.0 \text{ Adc})$                                 | $Q_{gs}$             | -           | 1.0                     | -                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID = 7.0 Add)                                                                             | $Q_{gd}$             | -           | 5.0                     | -                       |              |
| BODY-DRAIN DIODE RATINGS (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ote 4)                                                                                    |                      |             |                         |                         | •            |
| Forward On-Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(I_S = 7.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$                                         | $V_{SD}$             | -           | 0.82                    | 1.2                     | Vdc          |
| Reverse Recovery Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(I_S = 7.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s})$ | t <sub>rr</sub>      | -           | 35                      | -                       | ns           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           | ta                   | -           | 15                      | -                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           | t <sub>b</sub>       | -           | 20                      | -                       |              |
| Reverse Recovery Stored Charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | $Q_{RR}$             | _           | 0.02                    | -                       | μC           |

<sup>Reverse Recovery Stored Charge
4. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
5. Switching characteristics are independent of operating junction temperature.</sup> 



<sub>OS</sub>, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 1. On-Region Characteristics

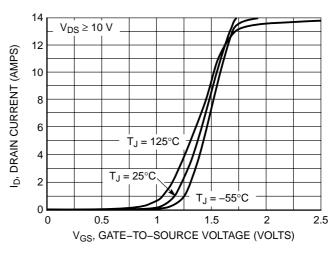



Figure 2. Transfer Characteristics

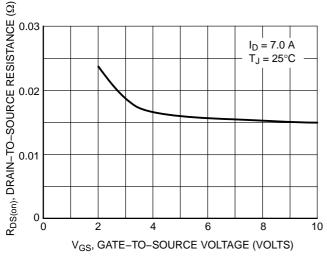



Figure 3. On–Resistance versus Gate–to–Source Voltage

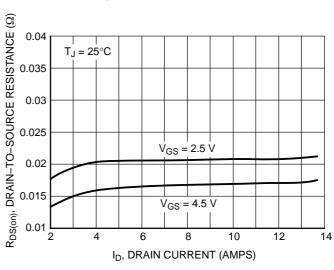



Figure 4. On-Resistance versus Drain Current and Gate Voltage

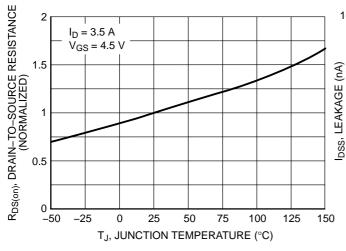



Figure 5. On–Resistance Variation with Temperature

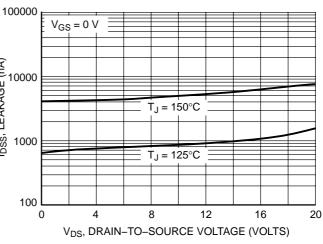
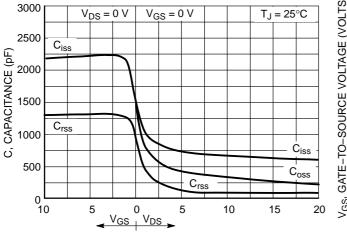




Figure 6. Drain-to-Source Leakage Current versus Voltage



GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)



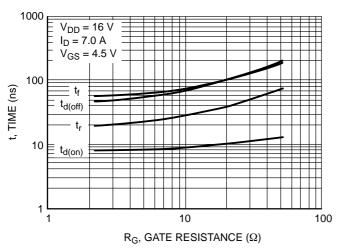



Figure 9. Resistive Switching Time Variation versus Gate Resistance

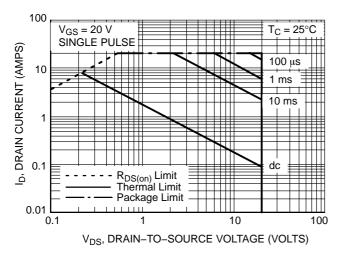



Figure 11. Maximum Rated Forward Biased Safe Operating Area

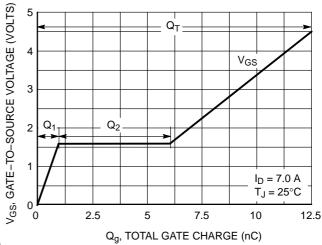



Figure 8. Gate-to-Source Voltage versus Total Charge

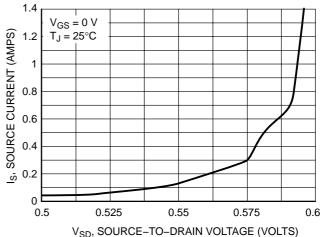



Figure 10. Diode Forward Voltage versus Current

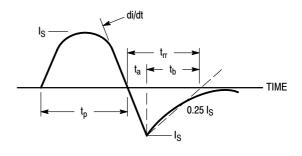



Figure 12. Diode Reverse Recovery Waveform

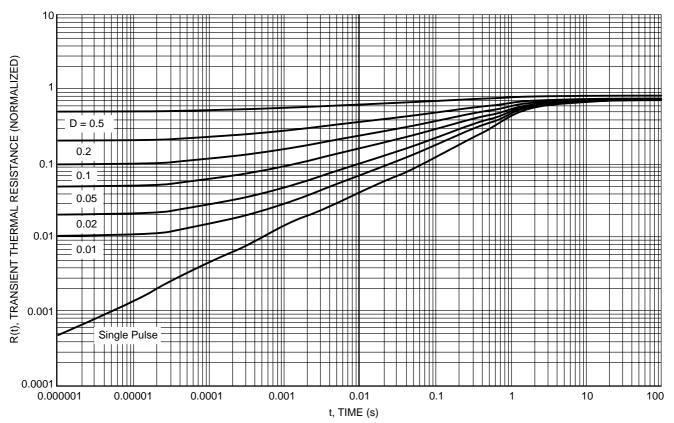
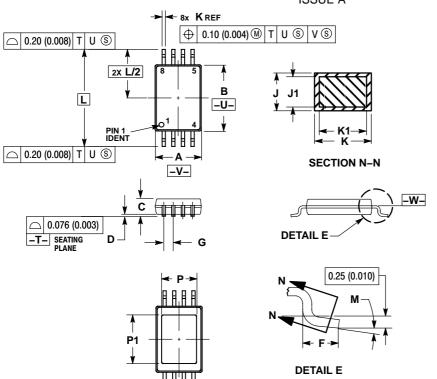




Figure 13. Thermal Response

#### PACKAGE DIMENSIONS

#### TSSOP-8 CASE 948S-01 **ISSUE A**



#### NOTES:

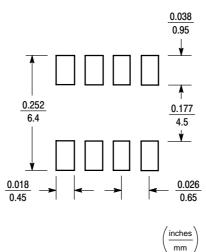
- DTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

  2. CONTROLLING DIMENSION: MILLIMETER.

  3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

  4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.


  5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

  6. DIMENSION A AND B ARE TO BE

| 6. | DIMENSIO | n a ani | D B ARE | TO BE   |
|----|----------|---------|---------|---------|
| DE | TERMINED | AT DA   | TUM PL  | ANE -W- |

| MILLIMETERS |                                                                         | INCHES                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MIN         | MAX                                                                     | MIN                                                                                                                                                                               | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 2.90        | 3.10                                                                    | 0.114                                                                                                                                                                             | 0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 4.30        | 4.50                                                                    | 0.169                                                                                                                                                                             | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|             | 1.10                                                                    |                                                                                                                                                                                   | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.05        | 0.15                                                                    | 0.002                                                                                                                                                                             | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.50        | 0.70                                                                    | 0.020                                                                                                                                                                             | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.65 BSC    |                                                                         | 0.026                                                                                                                                                                             | BSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 0.09        | 0.20                                                                    | 0.004                                                                                                                                                                             | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.09        | 0.16                                                                    | 0.004                                                                                                                                                                             | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.19        | 0.30                                                                    | 0.007                                                                                                                                                                             | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.19        | 0.25                                                                    | 0.007                                                                                                                                                                             | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 6.40 BSC    |                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 0°          | 8°                                                                      | 0°                                                                                                                                                                                | 8°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|             | 2.20                                                                    |                                                                                                                                                                                   | 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|             | 3.20                                                                    |                                                                                                                                                                                   | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|             | MIN<br>2.90<br>4.30<br><br>0.05<br>0.50<br>0.65<br>0.09<br>0.09<br>0.19 | MIN   MAX   2.90   3.10   4.30   4.50     1.10   0.05   0.15   0.50   0.70   0.65   BSC   0.09   0.20   0.09   0.16   0.19   0.30   0.19   0.25   6.40   BSC   0.90   8°     2.20 | MIN         MAX         MIN           2.90         3.10         0.114           4.30         4.50         0.169            1.10            0.05         0.15         0.002           0.50         0.70         0.020           0.65         BSC         0.026           0.09         0.20         0.004           0.09         0.16         0.004           0.19         0.30         0.007           6.40         BSC         0.252           0°         8°         0°            2.20 |  |

#### **SOLDERING FOOTPRINT\***



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative