

SN74LS669

SYNCHRONOUS 4-BIT UP/DOWN COUNTER

The SN54/74LS669 is a synchronous 4-bit up/down counter. The LS669 is a 4-bit binary counter. For high speed counting applications, this presetable counter features an internal carry lookahead for cascading purposes. By clocking all flip-flops simultaneously so the outputs change coincident with each other (when instructed to do so by the count enable inputs and internal gating) synchronous operation is provided. This helps to eliminate output counting spikes, normally associated with asynchronous (ripple-clock) counters. The four master-slave flip-flops are triggered on the rising (positive-going) edge of the clock waveform by a buffered clock input.

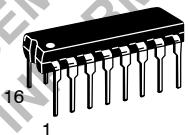
Circuitry of the load inputs allows loading with the carry-enable output of the cascaded counters. Because loading is synchronous, disabling of the counter by setting up a low level on the load input will cause the outputs to agree with the data inputs after the next clock pulse.

Cascading counters for N-bit synchronous applications are provided by the carry look-ahead circuitry, without additional gating. Two count-enable inputs and a carry output help accomplish this function. Count-enable inputs (\bar{P} and \bar{T}) must both be low to count. The level of the up-down input determines the direction of the count. When the input level is low, the counter counts down, and when the input is high, the count is up. Input \bar{T} is fed forward to enable the carry output. The carry output will now produce a low level output pulse with a duration 9 equal to the high portion of the Q_A output when counting up and when counting down 9 equal to the low portion of the Q_A output. This low level carry pulse may be utilized to enable successive cascaded stages. Regardless of the level of the clock input, transitions at the \bar{P} or \bar{T} inputs are allowed. By diode-clamping all inputs, transmission line effects are minimized which allows simplification of system design.

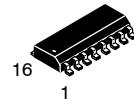
Any changes at control inputs (ENABLE \bar{P} , ENABLE \bar{T} , LOAD, UP/DOWN) will have no effect on the operating mode until clocking occurs because of the fully independent clock circuits. Whether enabled, disabled, loading or counting, the function of the counter is dictated entirely by the conditions meeting the stable setup and hold times.

- Programmable Look-Ahead Up/Down Binary/Decade Counters
- Fully Synchronous Operation for Counting and Programming
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Fully Independent Clock Circuit
- Buffered Outputs

ON Semiconductor®

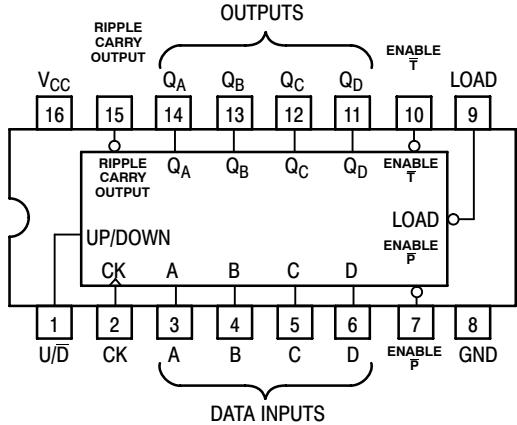

<http://onsemi.com>

SYNCHRONOUS 4-BIT UP/DOWN COUNTER

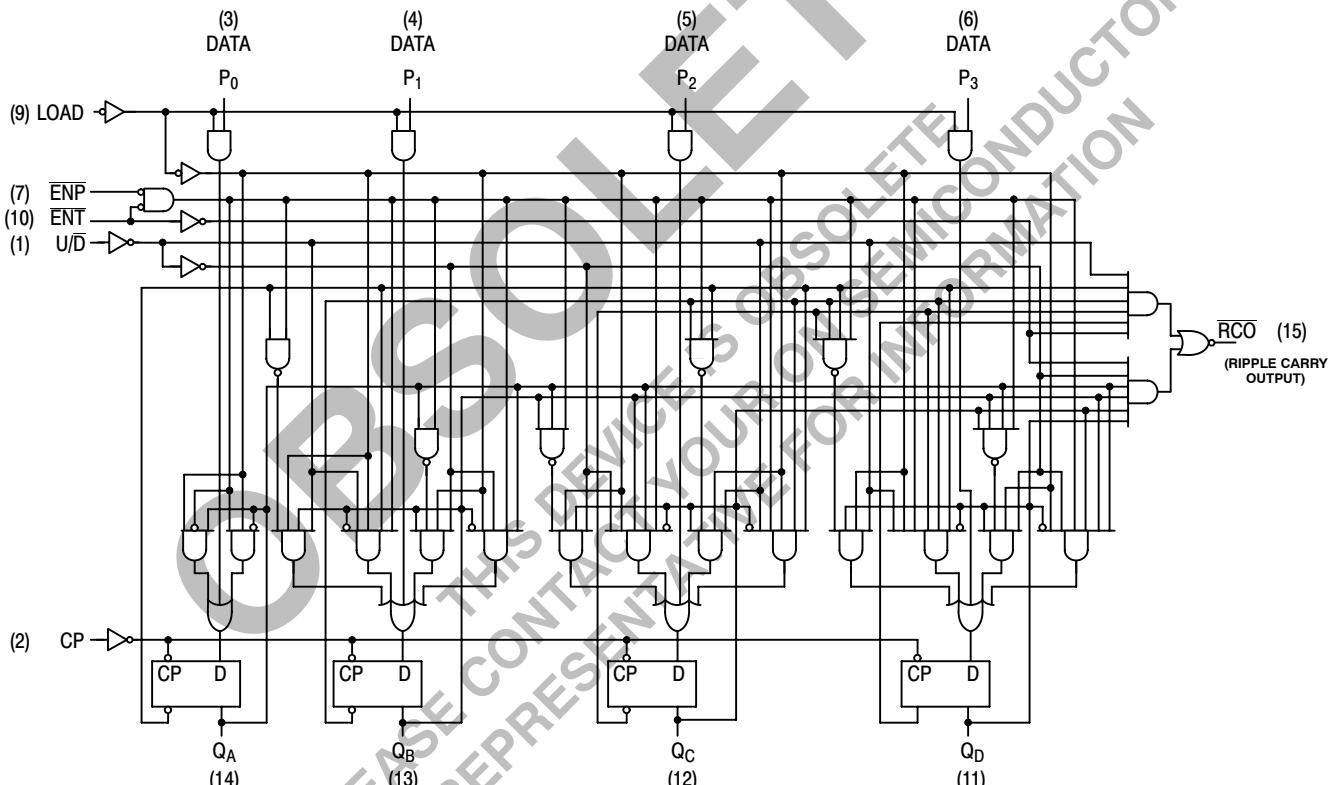

LOW POWER SCHOTTKY

J SUFFIX
CERAMIC
CASE 620-09

N SUFFIX
PLASTIC
CASE 648-08


D SUFFIX
SOIC
CASE 751B-03

ORDERING INFORMATION


SN54LSXXXJ	Ceramic
SN74LSXXXN	Plastic
SN74LSXXXD	SOIC

SN74LS669

CONNECTION DIAGRAM (TOP VIEW)

LOGIC DIAGRAM

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T_A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
I_{OH}	Output Current — High	54, 74			-0.4	mA
I_{OL}	Output Current — Low	54 74			4.0 8.0	mA

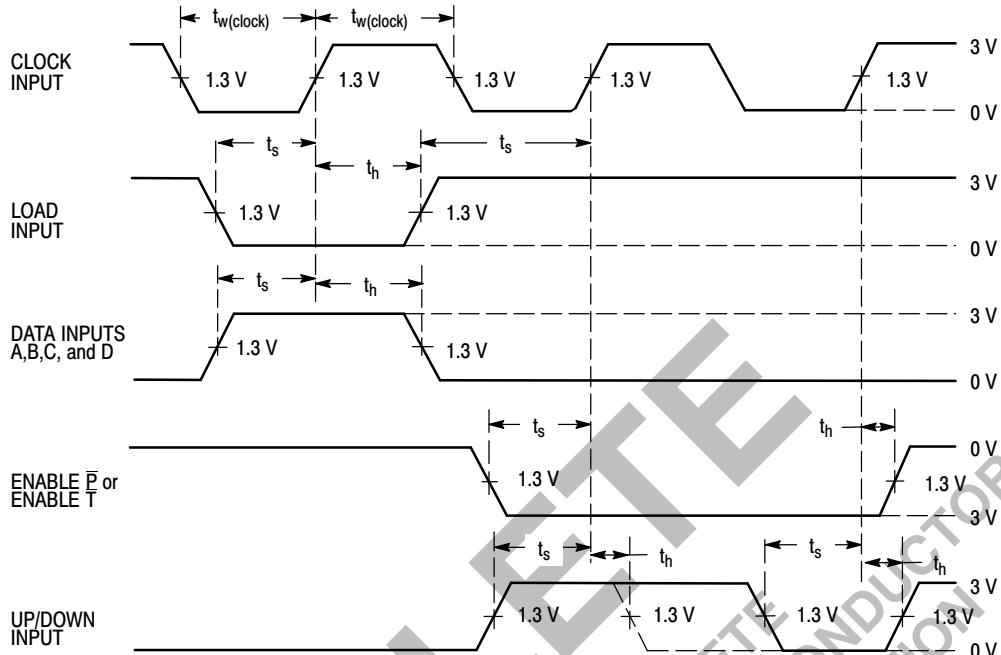
SN74LS669

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
V_{IL}	Input LOW Voltage	54		0.7	V	Guaranteed Input LOW Voltage for All Inputs
		74		0.8		
V_{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = \text{MIN}$, $I_{IN} = -18 \text{ mA}$
V_{OH}	Output HIGH Voltage	54	2.5	3.5	V	$V_{CC} = \text{MIN}$, $I_{OH} = \text{MAX}$, $V_{IN} = V_{IH}$ or V_{IL} per Truth Table
		74	2.7	3.5	V	
V_{OL}	Output LOW Voltage	54, 74		0.25	0.4	$I_{OL} = 4.0 \text{ mA}$
		74		0.35	0.5	$I_{OL} = 8.0 \text{ mA}$
I_{IH}	Input HIGH Current	Others		20	μA	$V_{CC} = \text{MAX}$, $V_{IN} = 2.7 \text{ V}$
		Enable T		40	μA	
		Others		0.1	mA	$V_{CC} = \text{MAX}$, $V_{IN} = 7.0 \text{ V}$
		Enable T		0.2	mA	
I_{IL}	Input LOW Current	Others		-0.4	mA	$V_{CC} = \text{MAX}$, $V_{IN} = 0.4 \text{ V}$
		Enable T		-0.8	mA	
I_{OS}	Short Circuit Current (Note 1)	-20		-100	mA	$V_{CC} = \text{MAX}$
I_{CC}	Power Supply Current			34	mA	$V_{CC} = \text{MAX}$

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25^\circ\text{C}$, $V_{CC} = 5.0 \text{ V}$)


Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
f_{MAX}	Maximum Clock Frequency	25	32		MHz	$C_L = 15 \text{ pF}$
t_{PLH} t_{PHL}	Propagation Delay, Clock to \overline{RCO}		26 40	40 60	ns	
t_{PLH} t_{PHL}	Propagation Delay, Clock to Any Q		18 18	27 27	ns	
t_{PLH} t_{PHL}	Enable to \overline{RCO}		11 29	17 45	ns	
t_{PLH} t_{PHL}	U/D to \overline{RCO}		22 26	35 40	ns	

AC SETUP REQUIREMENTS ($T_A = 25^\circ\text{C}$)

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
t_W	Clock Pulse Width	20			ns	$V_{CC} = 5.0 \text{ V}$
t_s	Data Setup Time	20			ns	
t_s	Enable Setup Time	35			ns	
t_s	Load Setup Time	25			ns	
t_s	U/D Setup Time	30			ns	
t_h	Hold Time, Any Input	0			ns	

SN74LS669

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative