

DIFFERENTIAL VARIABLE GAIN AMPLIFIER FOR ADSL LINE INTERFACE

■ LOW NOISE : 4.7nV/√Hz ■ LOW DISTORTION

■ HIGH SLEW RATE: 90V/µs

■ WIDE BANDWIDTH: **52MHz** @ -3dB &

18dB gain

■ GAIN PROGRAMMABLE from -9dB to +30dB with 3dB STEPS

■ POWER DOWN FUNCTION

DESCRIPTION

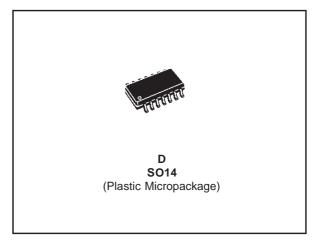
This TS636 is particularly intended for applications such as preamplification in telecommunication systems using multiple carriers. It has been minly designed to fit with ADSL chip-sets such as ASCOT ADSL chip-set for CPE.

The TS636 is a differential digitally controlled variable gain amplifier featuring a high slew rate of $90V/\mu s$, a large bandwidth, a very low distortion and a very low current and voltage noise.

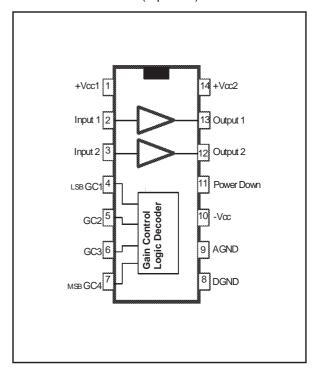
The gain can be set from -9dB to +30dB through a 4bit digital word, with 3dB steps.

The gain monotonicity is guaranteed by design.

The TS636 comes in SO-14 plastic packages.


APPLICATION

 Preamplifier with automatic gain control for Asymmetric Digital Subscriber Line (ADSL).


ORDER CODE

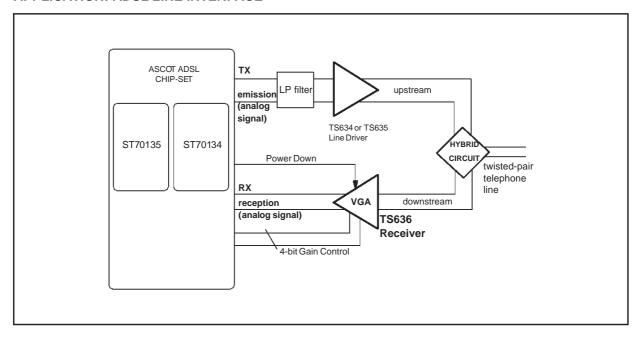
Part Number	Temperature Range	Package	
Part Number	remperature Name	D	
TS636I	-40, +85°C	•	

D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

January 2001 1/9

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage 1)	14	V
V _i	Input Voltage ²⁾	0 to 14	V
T _{oper}	Operating Free Air Temperature Range TS636ID	-40 to + 85	°C
T _{std}	Storage Temperature	-65 to +150	°C
T _j	Maximum Junction Temperature	150	°C
R _{thjc}	Thermal Resistance Junction to Case	22	°C/W
R _{thja}	Thermal Resistance Junction to Ambiante Area	125	°C/W
	Output Short Circuit Duration	Infinite	

^{1.} All voltages values are with respect to network terminal.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	5 to 12	V
V _{icm}	Common Mode Input Voltage	V _{CC} /2	V

APPLICATION: ADSL LINE INTERFACE

^{2.} The magnitude of input and output voltages must never exceed $\rm V_{CC}$ +0.3V.

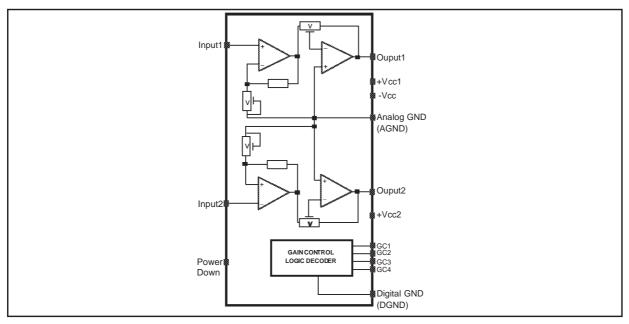
E = 100kHz)	romotor	T	andition	N/I:-	T	I Max	11:4:4
Input Bias Current (AGND pin) loc Total Supply Current No load, V _{out} = 0 28 28 28 28 28 28 28			l lest Co	onation	win.	ı yp.	Iwax	Unit
I _{CC} Total Supply Current No load, V _{out} = 0 28 6								
ΔVorpset Differential Input Offset Voltage SVR Supply Voltage Rejection Ratio A _V = 0dB 50 80 POWER DOWN MODE						_		μΑ
SVR Supply Voltage Rejection Ratio A _V = 0dB 50 80						28		mA
Power Down MoDE Copyright				0dB			6	mV
	_		$A_V = 0dB$		50	80		dB
Power Down Output Impedance Power Down Mode 100kΩ 150kΩ//5pF)D	Œ						
$ \begin{array}{ c c c c c } \hline \textbf{AC PERFORMANCE} \\ \hline \textbf{$Z_{\rm ln}$} & & & & & & & & & & $	n T	Total Consumptio	n Power Down M	/lode			150	μΑ
$ \begin{array}{ c c c c c } \hline \textbf{AC PERFORMANCE} \\ \hline \textbf{Z}_{in} & & & & & & & & & & & & & & & & & & &$	n (Output Impedanc	Power Down N	/lode	100kΩ	150kΩ//5pF		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ε							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Т			100kΩ//5pF	Г	Π
Voltage Gain F = 1MHz -9 30	Οu	utput Voltage	$R_L = 500\Omega$		4			٧
Gain monotonicity guaranteed by design -9 30			$R_L = 500\Omega$			-4.5	-4	V
Pay Precision of the Voltage Gain F= 1MHz -1.4 3 3.6 4	n		F= 1MHz				20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	on	nicity guaranteed	oy design] -9		30	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	th	he Voltage Gain	F= 1MHz		-1.4		1.4	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			F= 1MHz		2.4	3	3.6	dB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tcl	h between Both	F= 1MHz				1	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	@	-3dB	$A_V = -9dB$		45	100		MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_L	_L = 15pF	$A_V = +30dB$		9	17		MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ro	oll-off	$A_{V} = +30 dB, F$	= 1MHz		0.08		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ISourcel		17	28	 		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$R_L = 500\Omega$, $C_L = 15pF$				17	22		mA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ga	ain independent)	V _o = 2Vpeak		40	90		V/μs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{tabular}{ll} Equivalent Input Noise Voltage & F = 100kHz \\ A_V = 30dB & 1.7 \\ A_V = 30dB & 1.7 \\ \hline \\ IM3 & 1.4 \\ \hline IM3_1 & I$	np	put Noise Current	F = 100kHz			1.6		pA/√H
$ \text{THD30} \text{ Harmonic Distorsion} \\ \text{Harmonic Distorsion} \\ \text{Harmonic Distorsion} \\ \\ \text{H2} \\ \text{H3} \\ \text{-93} \\ \text{H4} \\ \text{-98} \\ \text{H5} \\ \text{-99} \\ \\ \text{H5} \\ \text{-99} \\ \\ \text{V}_{out} = 1 \text{Vpeak, A}_{V} = +30 \text{dB} \\ \text{R}_{L} = 500 \Omega / / 15 \text{pF} \\ \text{-} \\ \text{-} \\ \text{0} \\ \text{80kHz} \\ \text{-} \\ -$						4.7		nV/√H:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			H2	·		-70		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ıst	itorsion	H3			-93		dBc
$ \begin{array}{c} \text{IM3_1} \\ \text{F1} = 180 \text{kHz}, \ \text{F2} = 280 \text{kHz} \\ \end{array} \begin{array}{c} \text{V}_{\text{out}} = 1 \text{Vpeak}, \ \text{A}_{\text{V}} = +30 \text{dB} \\ \text{R}_{\text{L}} = 500 \Omega \text{//15pF} \\ \hline @ \ 80 \text{kHz} \\ \hline @ \ 380 \text{kHz} \\ \hline @ \ 640 \text{kHz} \\ \hline @ \ 740 \text{kHz} \\ \end{array} \begin{array}{c} -77 \\ -85 \\ \hline @ \ 640 \text{kHz} \\ \hline \end{array} $			H4			-98		1
Third Order Intermodulation Product R _L = 500Ω//15pF @ 80kHz -77 @ 380kHz -85 @ 640kHz -86 @ 740kHz -87			H5			-99		1
Product	ما	nto uno o di ilatia n						
F1 = 180kHz, F2 = 280kHz @ 380kHz		@ 80kHz			-77	i –	400	
@740kHz -86 -87			@ 380kHz			-85		dBc
			@640kHz			-86]
$V_{-+} = 1 \text{Vpeak } A_V = +30 \text{dB}$			@740kHz			-87		<u></u>
R 5000//15pF	I۰	ntormodulation						
Inira Order Intermodulation 60kHz -77	Third Order Intermodulation Product					-77		
@ 90kHz -79			@ 90kHz			-79	1	→ dBc
F1 = 70kHz, F2 = 80kHz	, F	-∠ = 8UKHZ	@220kHz			-83		1
@230kHz -84			@230kHz			-84		1

DIGITAL INPUTS

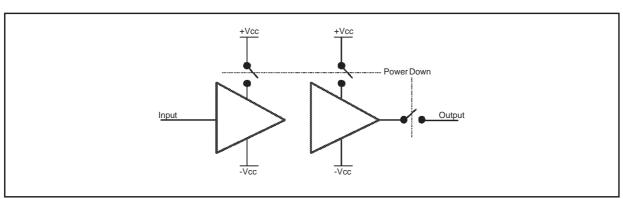
Pin	Parameter	Min.	Тур.	Max.	Unit
GC1, GC2, GC3	Low Level		0	0.8	V
and GC4	High Level	2	3.3		V
Power Down	Thershold Voltage for Power		0	0.8	V
1 OWEL DOWN	Down Mode (high level active)	2	3.3		V

SIMPLIFIED SCHEMATIC

The TS636 consists of two independent channels.


Each channel has two stages. The first is a very low noise digitally controlled variable gain amplifier (range 0 to 18dB).

The TS636 features a high input impedance and a low noise current. To minimize the overall noise figure, the source impedance must be less than $3k\Omega$.


This value gives an equal contribution of voltage and current noises.

The second stage is a gain/attenuation stage (+12dB to -9dB) featuring a low output impedance.

This output stage can drive loads as low as 500Ω .

POWER DOWN MODE POSITION

BANDWIDTH

The small signal bandwidth is almost constant for gains between +18dB to 0dB and is in the order of 52MHz to 70MHz respectively. For 30dB gain the bandwidth is around 18MHz.

The power bandwidth is typically equal to 30MHz for 2V peak to peak signals.

MAXIMUM INPUT LEVEL

The input level must not exceed the following values:

negative peak value: must be greater than -V_{CC} + 1.5V

positive peak value: must be less than +V_{CC} - 1.5V

For example, if a ±6V power supply is used, the input signal can swing between -4.5V and +4.5V.

These values are due to common mode input range limitations of the input stage of the first amplifier.

Some other limitations may occur, due to the slew rate of the first operational amplifier (typically in the order of 300V/µs). This means that the maximum input signal decreases at high frequency.

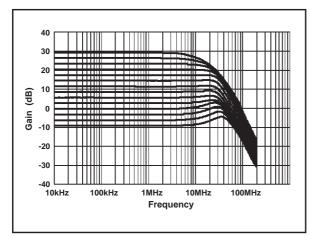
SINGLE SUPPLY OPERATION

The incoming signal is AC coupled to the inputs.

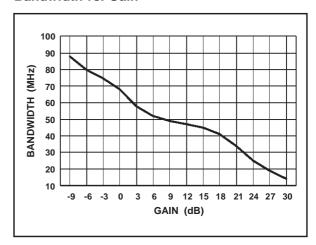
The TS636 can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid supply voltage ($+V_{CC/2}$). This bias network must be carefully designed, in order to reject any noise present on the supply rail.

The AGND pin (9) must be connected to $+V_{CC/2}$. The bias current of the second stage (inverting structure) is $8\mu A$ for both amplifiers. A resistor divider structure can be used. Two resistances should be chosen by considering $8\mu A$ as the 1% of the total current through these resistances. For a single +12V supply voltage, two resistances of $7.5k\Omega$ can be used. The differential input consists of a high pass circuit, formed by the $1\mu F$ capacitor and a $1k\Omega$ resistance and gives a break frequency of 160Hz.

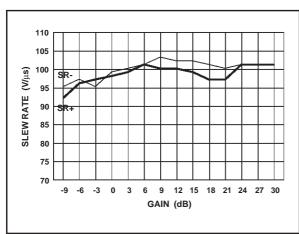
SINGLE +12V SUPPLY OF THE TS636

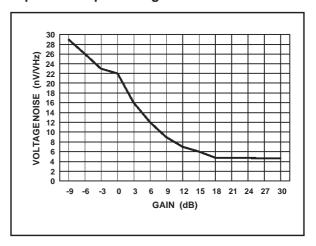

GAIN CONTROL

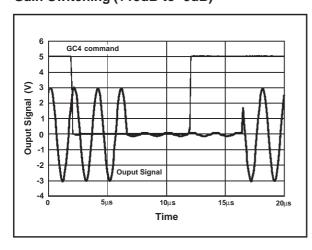
The gain and the power down mode is programmed with a 4 bit digital word :

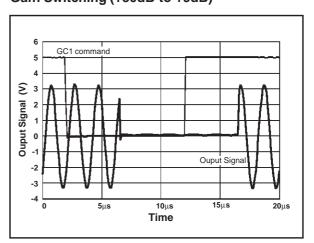

Digital Control GC4GC1 MSB LSB	Total Gain (dB)	First Stage Gain (dB)	Second Stage Gain (dB)	Maximum Input Level	Bandwidth Small Signal	Eq. Input Noise (nV/√Hz)
\$0000	-9	0	-9	2.8Vrms	110MHZ	29
\$0001	-6	0	-6	2.8Vrms	100MHz	26
\$0010	-3	0	-3	2.8Vrms	85MHz	23
\$0011	0	0	0	2.8Vrms	69MHz	22
\$0100	3	3	0	2Vrms	63MHz	16
\$0101	6	6	0	1.4Vrms	58MHz	12
\$0110	9	9	0	1Vrms	56MHz	9
\$0111	12	12	0	0.7Vrms	55MHz	7
\$1000	15	15	0	0.5Vrms	54MHz	6
\$1001	18	18	0	0.35Vrms	52MHz	4.8
\$1010	21	21	3	0.25Vrms	42MHz	4.7
\$1011	24	24	6	175mVrms	30MHz	4.7
\$1100	27	27	9	125mVrms	24MHz	4.6
\$1101	30	30	12	88mVrms	18MHz	4.6
\$1110	30	30	12	88mVrms	18MHz	4.6
\$1111	30	30	12	88mVrms	18MHz	4.6

The gain is the same for both channels. The digital inputs are CMOS compatible. The supply voltage of the logic decoder used to transcode the digital word can be either 3.3V or 5V or V_{CC} .

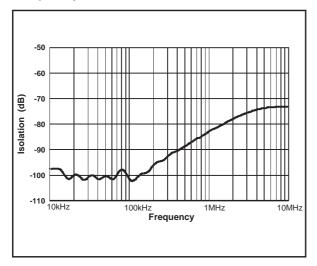

Closed Loop Gain vs. Frequency


Bandwidth vs. Gain

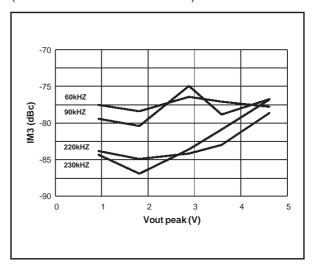

Negative & Positive Slew Rate vs. Gain


Equivalent Input Voltage Noise vs. Gain

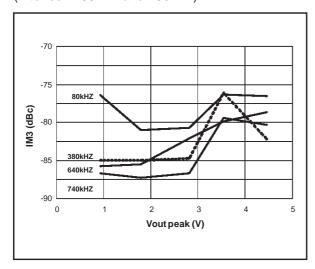
Gain Switching (+15dB to -9dB)


Gain Switching (+30dB to +9dB)

measurement conditions: Vcc= \pm 6V, Rload=500 Ω , Tamb=25°C

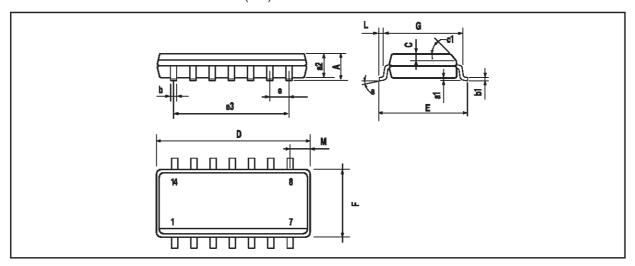


Output/Input Isolation in Power Down Mode vs. Frequency


3rd Order Intermodulation

(2 tones: 180kHz and 280kHz)

3rd Order Intermodulation


(2 tones: 180kHz and 280kHz)

measurement conditions: Vcc= \pm 6V, Rload=500 Ω , Tamb=25°C

PACKAGE MECHANICAL DATA

14 PINS - PLASTIC MICROPACKAGE (SO)

Dim.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
a1	0.1		0.2	0.004		0.008	
a2			1.6			0.063	
b	0.35		0.46	0.014		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.020		
c1			45°	(typ.)			
D (1)	8.55		8.75	0.336		0.344	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F (1)	3.8		4.0	0.150		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.020		0.050	
М			0.68			0.027	
S	8° (max.)						

Note: (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infring ement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

