

Precision, High Speed, JFET Input Operational Amplifiers

FEATURES

Guaranteed Offset Voltage 0°C to 70°C

Low Drift

 Guaranteed Bias Current 70°C Warmed Up

■ Guaranteed Slew Rate

1.5mV Max. 2.2mV Max. 4μV/°C Typ.

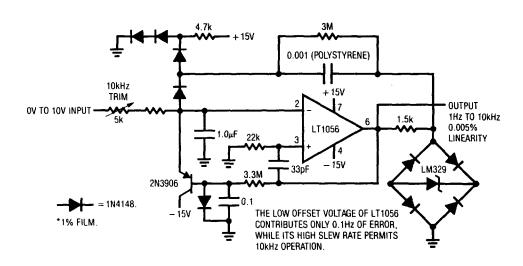
400pA Max. 9V/μs Min.

DESCRIPTION

The LT1055/LT1056 JFET input operational amplifiers combine precision specifications with high speed performance.

For the first time in an SO package, $14VI_{\mu}s$ slew rate and 5.5MHz gain-bandwidth product are simultaneously achieved with offset voltage of typically 0.5mV, $4\mu VI^{\circ}C$ drift, and bias currents of 60pA at 70°C.

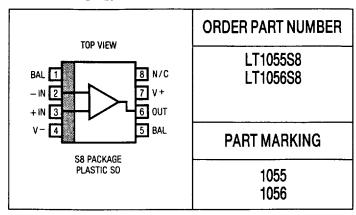
The 1.5mV maximum offset voltage specification is the best available on any JFET input operational amplifier in the plastic SO package.


The LT1055 and LT1056 are differentiated by their operating currents. The lower power dissipation LT1055 achieves lower bias and offset currents and offset voltage. The additional power dissipation of the LT1056 permits higher slew rate, bandwidth and faster settling time with a slight sacrifice in DC performance.

The voltage to frequency converter shown below is one of the many applications which utilize both the precision and high speed of the LT1055/LT1056.

APPLICATIONS

- Precision, High Speed Instrumentation
- Logarithmic Amplifiers
- **■** D/A Output Amplifiers
- **■** Photodiode Amplifiers
- Voltage to Frequency Converters
- Frequency to Voltage Converters
- Fast, Precision Sample and Hold


0 to 10kHz Voltage-to-Frequency Converter

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	± 20V
Differential Input Voltage	
Input Voltage	± 20V
Output Short Circuit Duration	ndefinite
Operating Temperature Range0°C	C to 70°C
Storage Temperature Range	
All Devices – 65°C	
Lead Temperature (Soldering, 10 sec.)	300°C

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $T_A = 25$ °C, $V_{CM} = 0V$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	LT1055S8 LT1056S8 TYP	MAX	UNITS
Vos	Input Offset Voltage (Note 1)			500	1500	μ۷
los	Input Offset Current	Fully Warmed Up		5	30	pA
l _B	Input Bias Current	Fully Warmed Up V _{CM} = +10V		±30 30	±100 150	pA pA
	Input Resistance — Differential — Common-Mode	V _{CM} = -11V to +8V V _{CM} = +8V to +11V		0.4 0.4 0.05		TΩ TΩ TΩ
	Input Capacitance			4		pF
e _n	Input Noise Voltage	0.1Hz to 10Hz LT10 LT10		2.5 3.5	<u>-</u>	μVp-p μVp-p
e _n	Input Noise Voltage Density	$f_0 = 10$ Hz (Note 2) $f_0 = 1$ kHz (Note 2)		35 15	70 22	nV/√Hz nV/√Hz
in	Input Noise Current Density	f _o = 10Hz, 1kHz (Note	3)	2.5	10	fA√Hz
A _{VOL}	Large Signal Voltage Gain	V ₀ = ± 10V R _L = R _L =		400 300		V/mV V/mV
	Input Voltage Range		±11	± 12		V
CMRR	Common-Mode Rejection Ratio	V _{CM} = ± 11V	83	98		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 10V \text{ to } \pm 18V$	88	104		dB
V _{out}	Output Voltage Swing	R _L = 2k	± 12	± 13.2	······································	V
SR	Slew Rate	LT10 LT10		12 14		VIμs VIμs
GBW	Gain-Bandwidth Product	f = 1MHz LT10 LT10		4.5 5.5		MHz MHz
ls	Supply Current	LT10 LT10		2.8 5.0	4.0 7.0	mA mA
	Offset Voltage Adjustment Range	R _{POT} = 100k		±5		mV

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $V_{CM} = 0V$, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise noted.

	PARAMETER	T		L1	1055\$8/1056	S8	
SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS
Vos	Input Offset Voltage (Note 1)		•		800	2200	μV
	Average Temperature Coefficient of Input Offset Voltage		•		4	15	μVI°C
Ios	Input Offset Current	Warmed Up T _A = 70°C	•		18	150	pA
l _B	Input Bias Current	Warmed Up T _A = 70°C	•		±60	± 400	pΑ
A _{VOL}	Large Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$	•	60	250		V/mV
CMRR	Common-Mode Rejection Ratio	$V_{CM} = \pm 10.5V$	•	82	98		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 10V \text{ to } \pm 18V$	•	87	103		dB
V _{OUT}	Output Voltage Swing	R _L = 2k	•	± 12	± 13.1		٧

The ullet denotes the specifications which apply over the full operating temperature range.

Note 1: Offset voltage is measured under two different conditions: (a) approximately 0.5 seconds after application of power; (b) at $T_A = 25^{\circ}$ C only, with the chip heated to approximately 38°C for the LT1055 and to 45°C for the LT1056, to account for chip temperature rise when the device is fully warmed up.

Note 2: This parameter is tested on a sample basis only.

Note 3: Current noise is calculated from the formula: $i_n = (2qi_B)^{1/2}$, where $q = 1.6 \times 10^{-19}$ coulomb. The noise of source resistors up to $1G\Omega$ swamps the contribution of current noise.

Note 4: Offset voltage drift with temperature is practically unchanged when the offset voltage voltage is trimmed to zero with a 100k potentiometer between the balance terminals and the wiper tied to V^+ .

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.