

16-Bit, Isolated Sigma-Delta Modulator

Enhanced Product AD7403-EP

FEATURES

5 MHz to 16 MHz external clock input rate 16 bits, no missing codes Signal-to-noise ratio (SNR): 88 dB typical Effective number of bits (ENOB): 14.2 bits typical Offset drift vs. temperature: 1.6 μV/°C typical

On-board digital isolator On-board reference

Full-scale analog input range: ±320 mV

High common-mode transient immunity: >25 kV/µs
Wide-body SOIC with increased creepage package

Slew rate limited output for low EMI Safety and regulatory approvals

UL recognition
5000 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice 5A
VDE Certificate of Conformity
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
V_{IORM} = 1250 V_{PEAK}

ENHANCED PRODUCT FEATURES

Defense and aerospace applications (AQEC standard)
Military temperature range: -55°C to +125°C
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Shunt current monitoring
AC motor controls
Power and solar inverters
Wind turbine inverters
Data acquisition systems
Analog-to-digital and optoisolator replacements

GENERAL DESCRIPTION

The AD7403-EP¹ is a high performance, second-order, Σ - Δ modulator that converts an analog input signal into a high speed, single-bit data stream, with on-chip digital isolation based on Analog Devices, Inc., iCoupler * technology. The device operates from a 5 V (V_{DD1}) power supply and accepts a differential input signal of ± 250 mV (± 320 mV full-scale). The differential input is ideally suited to shunt voltage monitoring in high voltage applications where galvanic isolation is required.

Rev. 0

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

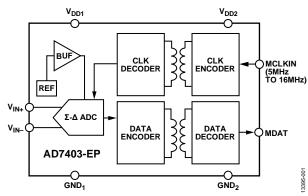


Figure 1.

The analog input is continuously sampled by a high performance analog modulator, and converted to a ones density digital output stream with a data rate of up to 16 MHz. The original

information can be reconstructed with an appropriate digital filter to achieve 88 dB signal to noise ratio (SNR) at 78.1 kSPS.

The serial interface is digitally isolated. High speed complementary metal oxide semiconductor (CMOS) technology, combined with monolithic transformer technology, means the on-chip isolation provides outstanding performance characteristics, superior to alternatives such as optocoupler devices. The AD7403-EP device is offered in a 16-lead, wide-body SOIC package and has an operating temperature range of -55° C to $+125^{\circ}$ C.

Additional application and technical information can be found in the AD7403 data sheet.

¹ Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329.

TABLE OF CONTENTS

I
1
1
1
1
2
3
4
5
5
5

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Ir	ısulation
Characteristics	6
Absolute Maximum Ratings	
ESD Caution	
Pin Configurations and Function Descriptions	8
Typical Performance Characteristics	9
Outline Dimensions	12
Ordering Guide	12

REVISION HISTORY

4/16—Revision 0: Initial Version

Enhanced Product AD7403-EP

SPECIFICATIONS

 $V_{\rm DD1} = 4.5 \ V \ to \ 5.5 \ V, V_{\rm DD2} = 4.5 \ V \ to \ 5.5 \ V, V_{\rm IN+} = -250 \ mV \ to \ +250 \ mV, V_{\rm IN-} = 0 \ V, T_{\rm A} = -55 ^{\circ}C \ to \ +125 ^{\circ}C, f_{\rm MCLKIN} = 5 \ MHz \ to \ 16 \ MHz, tested$ with sinc3 filter, 256 decimation rate, as defined by Verilog code, unless otherwise noted. All voltages are relative to their respective ground.

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
STATIC PERFORMANCE					
Resolution	16			Bits	Filter output truncated to 16 bits
Integral Nonlinearity (INL)1		±2	±12	LSB	
Differential Nonlinearity (DNL)1			±0.99	LSB	Guaranteed no missed codes to 16 bits
Offset Error ¹		±0.2	±0.9	mV	
Offset Drift vs. Temperature ²		1.6	3.8	μV/°C	
		1.3	3.1	μV/°C	0°C to 85°C
Offset Drift vs. V _{DD1} ²		50		μV/V	
Gain Error ¹		±0.2	±0.95	% FSR	
Gain Error Drift vs. Temperature ²		65	95	ppm/°C	
		40	60	μV/°C	
Gain Error Drift vs. V _{DD1} ²		±0.6		mV/V	
ANALOG INPUT					
Input Voltage Range	-320		+320	mV	Full-scale range
	-250		+250	mV	For specified performance
Input Common-Mode Voltage Range		-200 to +300		mV	
Dynamic Input Current		±45	±50	μΑ	$V_{IN+} = \pm 250 \text{ mV}, V_{IN-} = 0 \text{ V}$
		0.05		μA	$V_{IN+} = 0 V, V_{IN-} = 0 V$
DC Leakage Current		±0.01	±0.6	μA	
Input Capacitance		14		pF	
DYNAMIC SPECIFICATIONS ¹					$V_{IN+} = 1 \text{ kHz}$
Signal-to-Noise-and-Distortion Ratio (SINAD)	82	87		dB	
Signal-to-Noise Ratio (SNR)	86	88		dB	
Total Harmonic Distortion (THD)		-94		dB	
Peak Harmonic or Spurious Noise (SFDR)		-95		dB	
Effective Number of Bits (ENOB)	13.1	14.2		Bits	
Noise Free Code Resolution	14			Bits	
ISOLATION TRANSIENT IMMUNITY ¹	25	30		kV/μs	
LOGIC INPUTS					CMOS with Schmitt trigger
Input Voltage					
High (V⊮)	$0.8 \times V_{DD2}$			V	
Low (V _{IL})			$0.2 \times V_{DD2}$	V	
Input Current (I _{IN})			±0.6	μΑ	
Input Capacitance (C _{IN})			10	pF	
LOGIC OUTPUTS				T.	
Output Voltage					
High (V _{OH})	V _{DD2} - 0.1			V	Ι _ο = -200 μΑ
Low (V _{OL})			0.4	V	Ι _ο = 200 μΑ
POWER REQUIREMENTS					- · · · · · ·
V _{DD1}	4.5		5.5	V	
V _{DD2}	4.5		5.5	V	
I _{DD1}		30	36	mA	$V_{DD1} = 5.5 \text{ V}$
I _{DD2}		12	18	mA	$V_{DD2} = 5.5 \text{ V}$ $V_{DD2} = 5.5 \text{ V}$
Power Dissipation		231	297	mW	$V_{DD1} = V_{DD2} = 5.5 \text{ V}$

 $^{^{\}rm 1}$ See the Terminology section of the AD7403 datasheet. $^{\rm 2}$ Not production tested. Sample tested during initial release to ensure compliance.

TIMING SPECIFICATIONS

 $V_{\rm DD1}$ = 4.5 V to 5.5 V, $V_{\rm DD2}$ = 4.5 V to 5.5 V, $T_{\rm A}$ = -55°C to +125°C, unless otherwise noted. Sample tested during initial release to ensure compliance. It is recommended to read MDAT on the MCLKIN rising edge.

Table 2.

	Limit at T _{MIN} , T _{MAX}				
Parameter	Min	Тур	Max	Unit	Description
f _{MCLKIN}	5		16	MHz	Master clock input frequency
t_1^1			45	ns	Data access time after MCLKIN rising edge
t_2^1	12			ns	Data hold time after MCLKIN rising edge
t ₃	$0.45 \times t_{MCLKIN}$			ns	Master clock low time
t ₄	$0.45 \times t_{MCLKIN}$			ns	Master clock high time

¹ Defined as the time required from an 80% MCLKIN input level to when the output crosses 0.8 V or 2.0 V for $V_{DD2} = 3$ V to 3.6 V or when the output crosses 0.8 V or 0.7 × V_{DD2} for $V_{DD2} = 4.5$ V to 5.5 V as outlined in Figure 2. Measured with a $\pm 200 \mu A$ load and a 25 pF load capacitance.

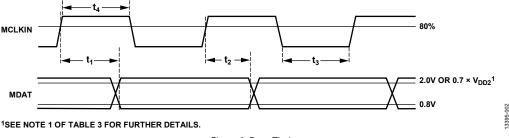


Figure 2. Data Timing

Enhanced Product AD7403-EP

PACKAGE CHARACTERISTICS

Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ¹	R _{I-O}		10 ¹²		Ω	
Capacitance (Input to Output) ¹	C _{I-O}		2.2		рF	f = 1 MHz
IC Junction to Ambient Thermal Resistance	θја		45		°C/W	Thermocouple located at center of package underside, test conducted on 4-layer board with thin traces

¹ The device is considered a 2-terminal device. For AD7403-EP, Pin 1 to Pin 8 are shorted together and Pin 9 to Pin 16 are shorted together.

INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 4.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Input to Output Momentary Withstand Voltage	V _{ISO}	5000 min	V	1 minute duration
Minimum External Air Gap (Clearance)	L(I01)	8.3 min ^{1, 2}	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(I02)	8.3 min ¹	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.034 min	mm	Distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>400	V	DIN IEC 112/VDE 0303 Part 1 ³
Isolation Group		II		Material Group (DIN VDE 0110, 1/89, Table I) ³

¹ In accordance with IEC 60950-1 guidelines for the measurement of creepage and clearance distances for a pollution degree of 2 and altitudes ≤2000 m.

REGULATORY INFORMATION

Table 5.

UL ¹	CSA	VDE ²
Recognized under 1577 Component Recognition Program ¹	Approved under CSA Component Acceptance Notice 5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ²
5000 V rms Isolation Voltage Single Protection	Basic insulation per CSA 60950-1-07 and IEC 60950-1, 830 V rms (1173 V _{PEAK}), maximum working voltage ³ Reinforced insulation per CSA 60950-1-07 and IEC 60950-1. 415 V rms (586 V _{PEAK}) maximum working voltage ³ Reinforced insulation per IEC 60601-1, 250 V rms	Reinforced insulation per DIN V VDE V 0884-10 (VDE V 0884-10):2006-12, 1250 V _{PEAK}
	(353 V _{PEAK}) maximum working voltage	
File E214100	File 205078	File 2471900-4880-0001

¹ In accordance with UL 1577, each AD7403-EP is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (current leakage detection limit = 15 µA).

² Consideration must be given to pad layout to ensure the minimum required distance for clearance is maintained.
³ CSA CTI rating for the AD7403-EP is >575 V and therefore Material Group II isolation group.

² In accordance with DIN V VDE V 0884-10, each AD7403-EP is proof tested by applying an insulation test voltage ≥ 2344 V_{PEAK} for 1 second (partial discharge detection limit = 5 pC).

³ Rating is calculated for a pollution degree of 2 and a Material Group III. The AD7403-EP RI-16-2 package material is rated by CSA to a CTI of >575 V and therefore Material Group II.

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS

This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by means of protective circuits.

Table 6.

Description	Symbol	Characteristic	Unit
INSTALLATION CLASSIFICATION PER DIN VDE 0110			
For Rated Mains Voltage ≤300 V rms		I to IV	
For Rated Mains Voltage ≤450 V rms		I to IV	
For Rated Mains Voltage ≤600 V rms		I to IV	
For Rated Mains Voltage ≤1000 V rms		I to IV	
CLIMATIC CLASSIFICATION		40/105/21	
POLLUTION DEGREE (DIN VDE 0110, TABLE 1)		2	
MAXIMUM WORKING INSULATION VOLTAGE	V _{IORM}	1250	V_{PEAK}
INPUT TO OUTPUT TEST VOLTAGE, METHOD B1			
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test, $t_m = 1$ Second, Partial Discharge < 5 pC	$V_{PD(M)}$	2344	V_{PEAK}
INPUT TO OUTPUT TEST VOLTAGE, METHOD A	$V_{PR(M)}$		
After Environmental Test Subgroup 1			
$V_{IORM} \times 1.6 = V_{PR}$, $t_m = 60$ Seconds, Partial Discharge < 5 pC		2000	V_{PEAK}
After Input and/or Safety Test Subgroup 2/ Safety Test Subgroup 3			
$V_{IORM} \times 1.2 = V_{PR}$, $t_m = 60$ Seconds, Partial Discharge < 5 pC		1500	V_{PEAK}
HIGHEST ALLOWABLE OVERVOLTAGE (TRANSIENT OVERVOLTAGE, t _{TR} = 10 Seconds)	V _{IOTM}	8000	V_{PEAK}
SURGE ISOLATION VOLTAGE	V _{IOSM}		V_{PEAK}
1.2 μs Rise Time, 50 μs, 50% Fall Time		7500	V_{PEAK}
SAFETY LIMITING VALUES (MAXIMUM VALUE ALLOWED IN THE EVENT OF A FAILURE, SEE Figure 3)			
Case Temperature	Ts	150	°C
Side 1 (P _{VDD1}) and Side 2 (P _{VDD2}) Power Dissipation	Pso	2.78	W
INSULATION RESISTANCE AT T _s , V _{IO} = 500 V	R _{IO}	>109	Ω

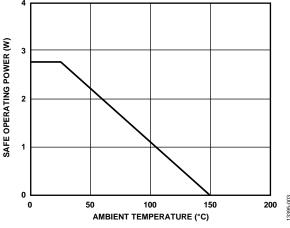


Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN V VDE V 0884-10

Enhanced Product AD7403-EP

ABSOLUTE MAXIMUM RATINGS

 $T_{\rm A}$ = 25°C, unless otherwise noted. All voltages are relative to their respective ground.

Table 7.

1 1010 / 1	
Parameter	Rating
V _{DD1} to GND ₁	-0.3 V to +6.5 V
V_{DD2} to GND_2	-0.3 V to +6.5 V
Analog Input Voltage to GND₁	$-1 \text{ V to V}_{DD1} + 0.3 \text{ V}$
Digital Input Voltage to GND₂	$-0.3 \text{ V to V}_{DD2} + 0.5 \text{ V}$
Output Voltage to GND ₂	$-0.3 \text{ V to V}_{DD2} + 0.3 \text{ V}$
Input Current to Any Pin Except Supplies ¹	±10 mA
Operating Temperature Range	−55°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Pb-Free Temperature, Soldering	
Reflow	260°C
ESD	2 kV
FICDM ²	±1250 V
HBM ³	±4000 V
	I

¹ Transient currents of up to 100 mA do not cause SCR to latch up.

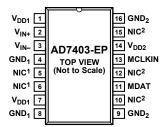
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 8. Maximum Continuous Working Voltage¹

Parameter	Max	Unit	Constraint
AC Voltage			
Bipolar Waveform	1250	VPEAK	20-year minimum lifetime (VDE approved working voltage)
Unipolar Waveform	1250	V_{PEAK}	20-year minimum lifetime
DC Voltage	1250	V _{PEAK}	20-year minimum lifetime

¹ Maximum continuous working voltage refers to continuous voltage magnitude imposed across the isolation barrier.

ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

 $^{^2}$ JESD22-C101; RC network: 1 Ω , Cpkg; Class: IV.

³ ESDA/JEDEC JS-001-2011; RC network: 1.5 kΩ, 100 pF; Class: 3A.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

 ^1NIC = NOT INTERNALLY CONNECTED. CONNECT TO $V_{DD1}, \, \text{GND}_1, \, \text{OR}$ LEAVE FLOATING. $^{\frac{3}{2}}$ 2NIC = NOT INTERNALLY CONNECTED. CONNECT TO $V_{DD2}, \, \text{GND}_2, \, \text{OR}$ LEAVE FLOATING. $^{\frac{3}{2}}$

Figure 4. Pin Configuration

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 7	V _{DD1}	Supply Voltage, 4.5 V to 5.5 V. This is the supply voltage for the isolated side of the AD7403-EP and is relative to GND ₁ . For device operation, connect the supply voltage to both Pin 1 and Pin 7. Decouple each supply pin to GND ₁ with a 10 μ F capacitor in parallel with a 1 nF capacitor.
2	V_{IN+}	Positive Analog Input.
3	V _{IN} -	Negative Analog Input. Normally connected to GND ₁ .
4, 8	GND ₁	Ground 1. This pin is the ground reference point for all circuitry on the isolated side.
5, 6	NIC	Not Internally Connected. These pins are not internally connected. Connect to VDD1, GND1, or leave floating.
9, 16	GND ₂	Ground 2. This pin is the ground reference point for all circuitry on the nonisolated side.
10, 12, 15	NIC	Not Internally Connected. These pins are not internally connected. Connect to V _{DD2} , GND ₂ , or leave floating.
11	MDAT	Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream. The bits are clocked out on the rising edge of the MCLKIN input and are valid on the following MCLKIN rising edge.
13	MCLKIN	Master Clock Logic Input. 5 MHz to 20 MHz frequency range. The bit stream from the modulator is propagated on the rising edge of the MCLKIN.
14	V _{DD2}	Supply Voltage, 3 V to 5.5 V. This is the supply voltage for the nonisolated side and is relative to GND ₂ . Decouple this supply to GND ₂ with a 100 nF capacitor.

Enhanced Product AD7403-EP

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25$ °C, $V_{DD1} = 5$ V, $V_{DD2} = 5$ V, $V_{IN+} = -250$ mV to +250 mV, $V_{IN-} = 0$ V, $f_{MCLKIN} = 16$ MHz, using a sinc3 filter with a 256 oversampling ratio (OSR), unless otherwise noted.

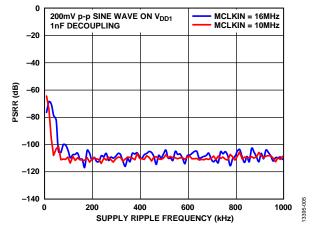


Figure 5. PSRR vs. Supply Ripple Frequency

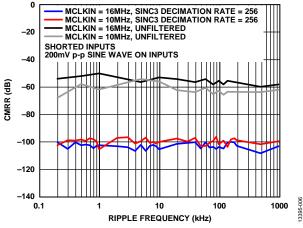


Figure 6. CMRR vs. Common-Mode Ripple Frequency



Figure 7. SINAD vs. Analog Input Frequency

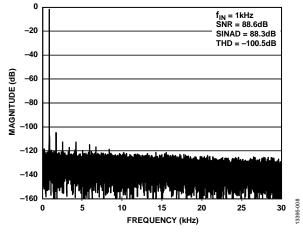


Figure 8. Typical Fast Fourier Transform (FFT)

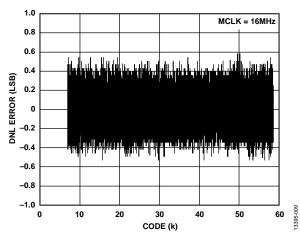


Figure 9. Typical DNL Error

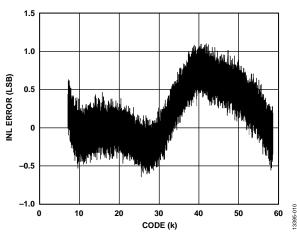


Figure 10. Typical INL Error

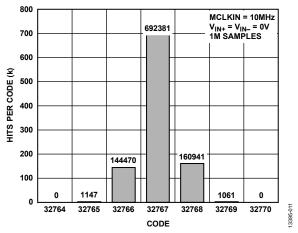


Figure 11. Histogram of Codes at Code Center

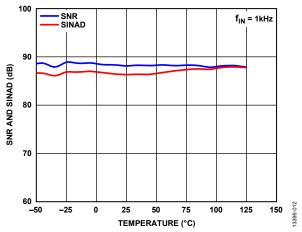


Figure 12. SNR and SINAD vs. Temperature

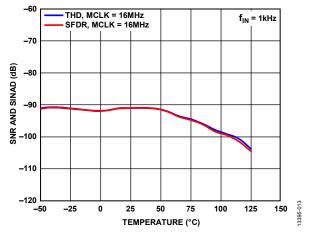


Figure 13. THD and SFDR vs. Temperature

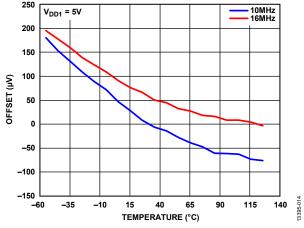


Figure 14. Offset vs. Temperature

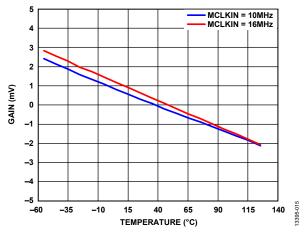


Figure 15. Gain Error vs. Temperature

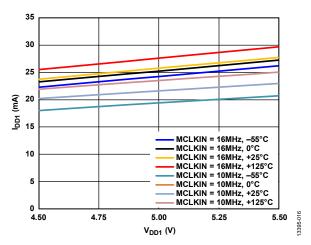


Figure 16. IDD1 vs. VDD1 at Various Temperatures and Clock Rates

Enhanced Product AD7403-EP

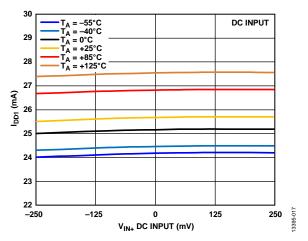


Figure 17. I_{DD1} vs. V_{IN+} DC Input at Various Temperatures

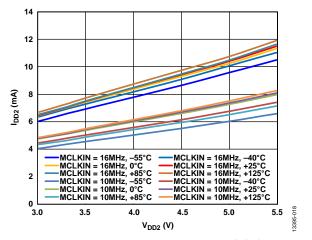


Figure 18. I_{DD2} vs. V_{DD2} at Various Temperatures and Clock Rates

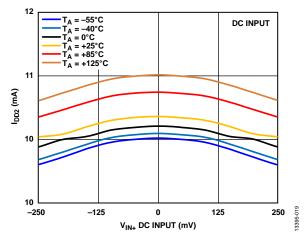


Figure 19. I_{DD2} vs. V_{IN+} DC Input at Various Temperatures

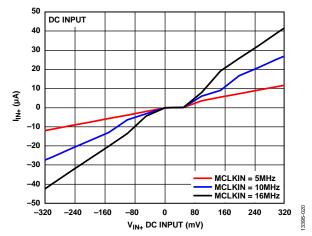


Figure 20. I_{IN+} vs. V_{IN+} DC Input at Various Clock Rates

OUTLINE DIMENSIONS

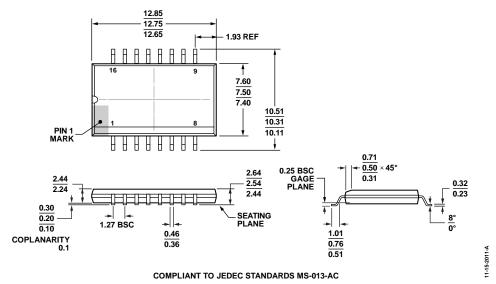


Figure 21. 16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]

Wide Body

(RI-16-2)

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
AD7403TRIZ-EP	−55°C to +125°C	16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]	RI-16-2
AD7403TRIZ-EP-RL7	−55°C to +125°C	16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]	RI-16-2
EVAL-AD7403FMCZ		AD7403 Evaluation Board	
EVAL-SDP-CH1Z		System Demonstration Platform	

 $^{^{1}}$ Z = RoHS Compliant Part.