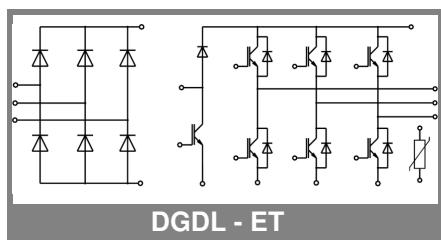


SEMITOP® 3

3-phase bridge rectifier +
brake chopper +3-phase
bridge inverter
SK 15 DGDL 126 ET


Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminum oxide ceramic (DCB)
- Trench technology IGBT
- CAL High Density FWD
- Integrated NTC temperature sensor

Typical Applications

- Inverter

Absolute Maximum Ratings		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT - Inverter, Chopper				
V_{CES}		1200		V
I_C	$T_s = 25 (80)^\circ\text{C}$	22 (15)		A
I_{CRM}	$I_{CRM} = 2 \times I_{Cnom}$, $t_p = 1 \text{ ms}$	30		A
V_{GES}		± 20		V
T_j		-40 ... +150		$^\circ\text{C}$
Diode - Inverter, Chopper				
I_F	$T_s = 25 (80)^\circ\text{C}$	25 (17)		A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$, $t_p = 1 \text{ ms}$	30		A
T_j		-40 ... +150		$^\circ\text{C}$
Rectifier				
V_{RRM}		1600		V
I_F	$T_s = 80^\circ\text{C}$	21		A
I_{FSM} / I_{TSM}	$t_p = 10 \text{ ms}$, $\sin 180^\circ$, $T_j = 25^\circ\text{C}$	220		A
I_{t^2}	$t_p = 10 \text{ ms}$, $\sin 180^\circ$, $T_j = 25^\circ\text{C}$	240		A ² s
T_j		-40 ... +150		$^\circ\text{C}$
T_{sol}	Terminals, 10s	260		$^\circ\text{C}$
T_{stg}		-40 ... +125		$^\circ\text{C}$
V_{isol}	AC, 1 min. / 1s	2500 / 3000		V

Characteristics		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT - Inverter, Chopper				
V_{CEsat}	$I_C = 15 \text{ A}$, $T_j = 25 (125)^\circ\text{C}$		1,7 (2)	2,1
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0,6 \text{ mA}$	5	5,8	6,5
$V_{CE(TO)}$	$T_j = 25^\circ\text{C}$ (125°C)		1 (0,9)	V
r_T	$T_j = 25^\circ\text{C}$ (125°C)		45 (70)	mΩ
C_{ies}	$V_{CE} = 25 \text{ V}$, $V_{GE} = 0 \text{ V}$, $f = 1 \text{ MHz}$		1,2	nF
C_{oes}	$V_{CE} = 25 \text{ V}$, $V_{GE} = 0 \text{ V}$, $f = 1 \text{ MHz}$		0,1	nF
C_{res}	$V_{CE} = 25 \text{ V}$, $V_{GE} = 0 \text{ V}$, $f = 1 \text{ MHz}$		9,1	nF
$R_{th(j-s)}$	per IGBT		1,6	K/W
$t_{d(on)}$	under following conditions		25	ns
t_r	$V_{CC} = 600 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		25	ns
$t_{d(off)}$	$I_C = 15 \text{ A}$, $T_j = 125^\circ\text{C}$		385	ns
t_f	$R_{Gon} = R_{Goff} = 30 \Omega$		90	ns
E_{on}	inductive load		2	mJ
E_{off}			1,8	mJ
Diode - Inverter, Chopper				
$V_F = V_{EC}$	$I_F = 15 \text{ A}$, $T_j = 25 (125)^\circ\text{C}$		1,6 (1,6)	V
$V_{(TO)}$	$T_j = 25^\circ\text{C}$ (125°C)		1 (0,8)	V
r_T	$T_j = 25^\circ\text{C}$ (125°C)		40 (53)	mΩ
$R_{th(j-s)}$	per diode		2,1	K/W
I_{RRM}	under following conditions		25	A
Q_{rr}	$I_F = 15 \text{ A}$, $V_R = 600 \text{ V}$		3	μC
E_{rr}	$V_{GE} = 0 \text{ V}$, $T_j = 125^\circ\text{C}$		1,1	mJ
$di_{F/dt}$	$= 900 \text{ A}/\mu\text{s}$			
Diode rectifier				
V_F	$I_F = 15 \text{ A}$, $T_j = 25^\circ\text{C}$		1,1	V
$V_{(TO)}$	$T_j = 150^\circ\text{C}$		0,9	V
r_T	$T_j = 150^\circ\text{C}$		20	mΩ
$R_{th(j-s)}$	per diode		2	K/W
Temperatur sensor				
R_{ts}	5 %, $T_r = 25 (100)^\circ\text{C}$		5000(493)	Ω
Mechanical data				
W			30	g
M_s	Mounting torque		2,5	Nm

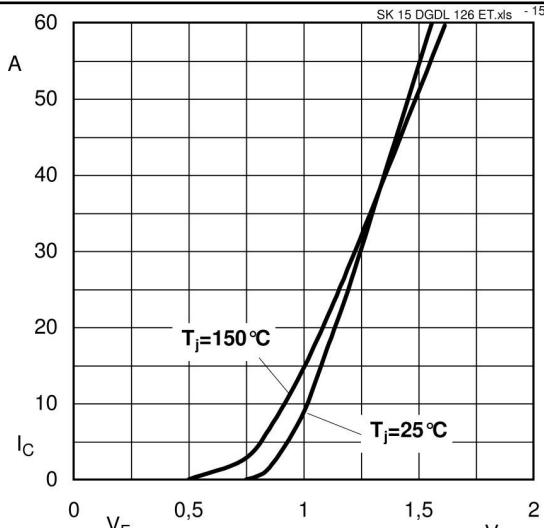


Fig. 15 Input Bridge Diode forward characteristic

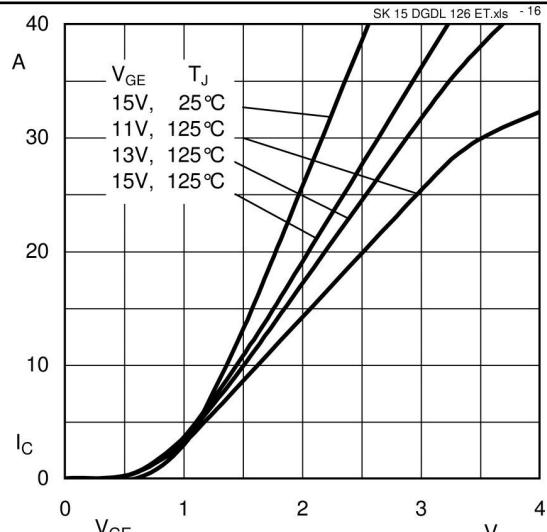


Fig.16 Typical Output Characteristic

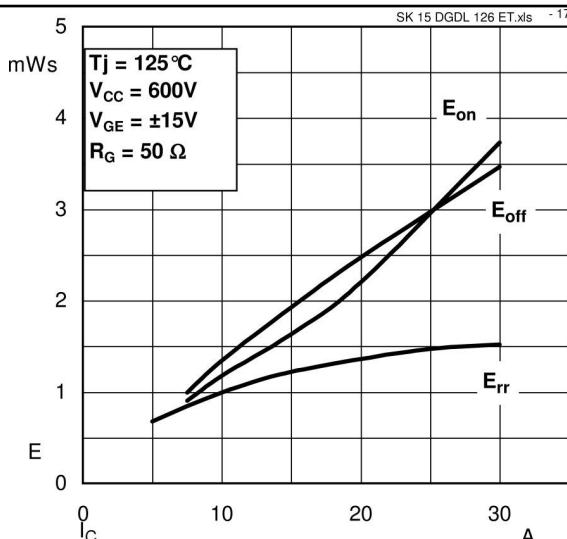


Fig.17 Turn-on/-off energy = f (Ic)

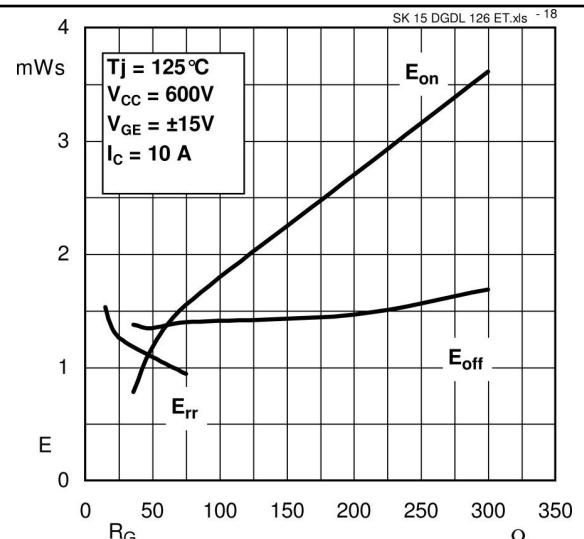


Fig.18 Turn-on/-off energy = f (Rg)

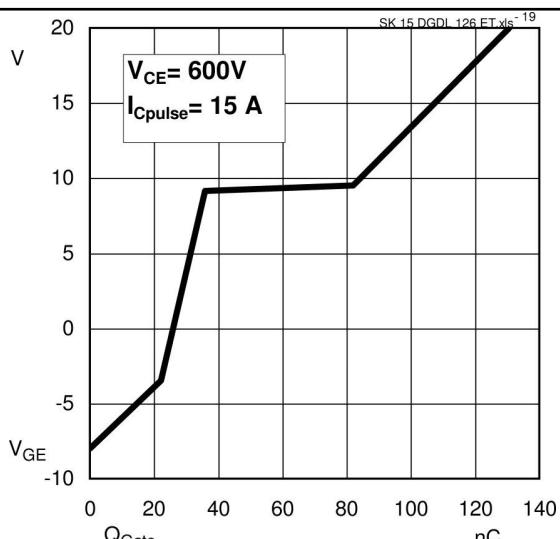


Fig.19 Typical gate charge characteristic

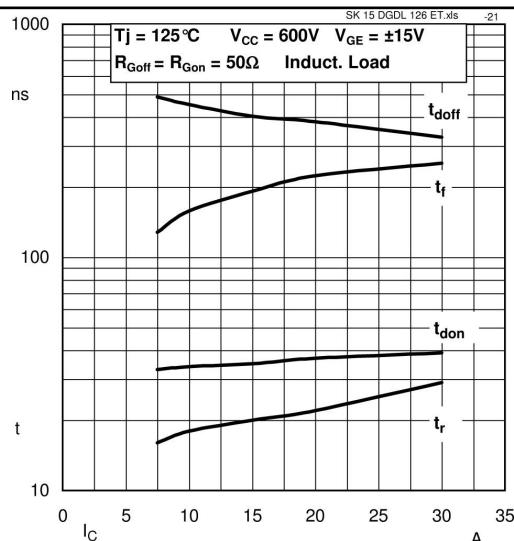


Fig.21 Typical switching time vs. Ic

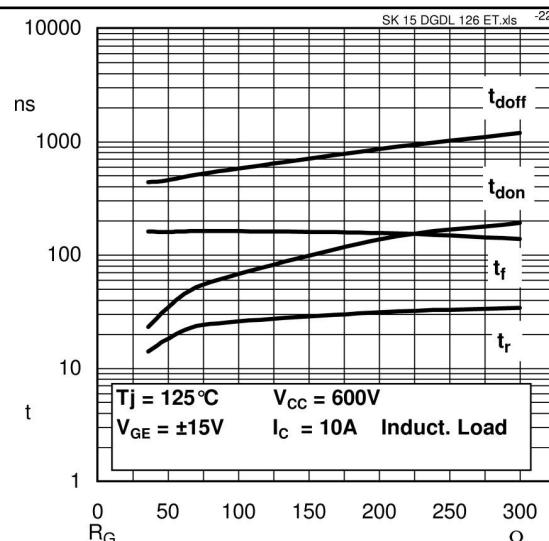


Fig.22 Typical switching time vs. Rg

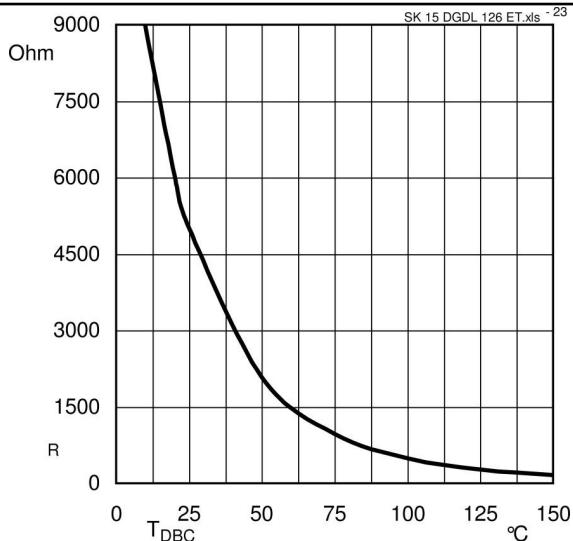


Fig.23 Typical NTC Characterisitc

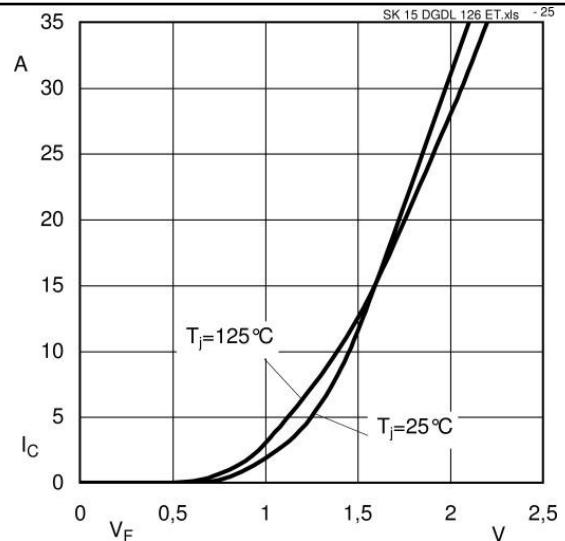
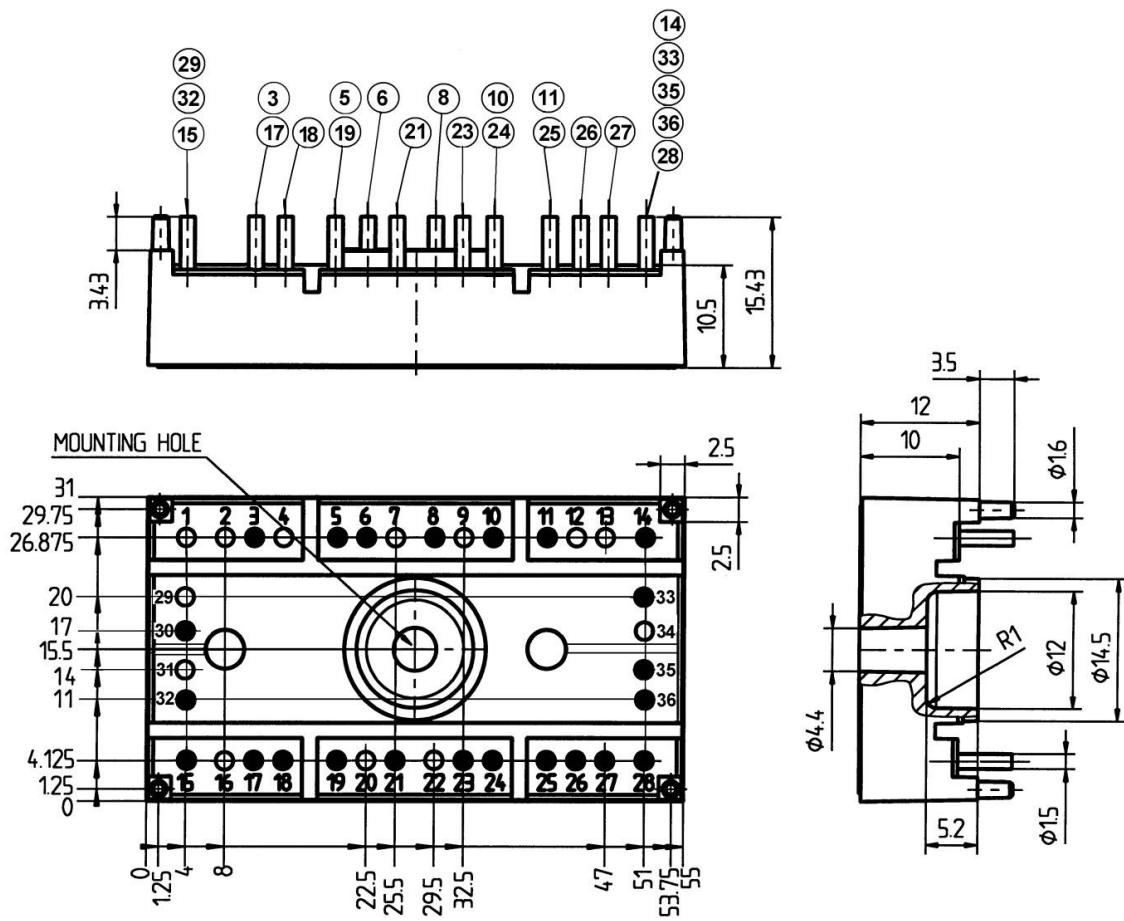
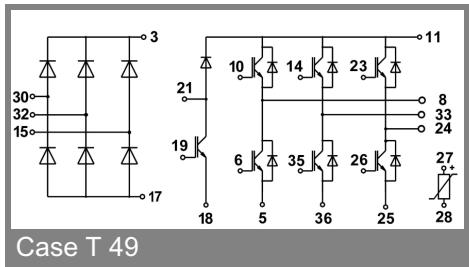



Fig.24 Typical FWD forward characteristic


SK 15 DGDL 126 ET

UL Recognized
File no. E63 532

Dimensions in mm

Case T 49 (Suggested hole diameter, in the PCB, for solder pins and plastic mounting pins: 2mm)

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.