

DM54LS461/DM74LS461 Octal Counter

General Description

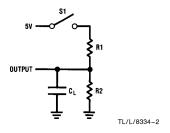
The LS461 is an 8-bit synchronous counter with parallel load, clear, and hold capability. Two function select inputs (I_0 , I_1) provide one of four operations which occur synchronously on the rising edge of the clock (CK).

The LOAD operation loads the inputs (D_7-D_0) into the output register (Q_7-Q_0) . The CLEAR operation resets the output register to all LOWs. The HOLD operation holds the previous value regardless of clock transitions. The INCREMENT operation adds one to the output register when the carry-in input is TRUE $(\overline{Cl} = LOW)$, otherwise the operation is a HOLD. The carry-out (\overline{CO}) is TRUE $(\overline{CO} = LOW)$ when the output register (Q_7-Q_0) is all HIGHs, otherwise FALSE $(\overline{CO} = HIGH)$.

The output register (Q_7-Q_0) is enabled when \overline{OE} is LOW, and disabled (HI-Z) when \overline{OE} is HIGH. The output drivers will sink the 24 mA required for many bus interface standards

Two or more LS461 octal counters may be cascaded to provide larger counters. The operation codes were chosen such that when I_1 is HIGH, I_0 may be used to select between LOAD and INCREMENT as in a program counter (JUMP/INCREMENT).

Features/Benefits


- Octal counter for microprogram-counter, DMA controller and general purpose counting applications
- 8 bits match byte boundaries
- Bus-structured pinout
- 24-pin Skinny Dip saves space
- TRI-STATE® outputs drive bus lines
- Low current PNP inputs reduce loading
- Expandable in 8-bit increments

Connection Diagram

Order Number DM54LS461J, DM74LS461J or DM74LS461N See NS Package Number J24F or N24C

Standard Test Load

Function Table

ŌĒ	СК	l1	10	CI	D7-D0 Q7-Q0		Operation
Н	Х	Х	Х	Х	Х	Z	HI-Z
L	↑	L	L	Х	Х	L	CLEAR
L	1	L	Н	Х	X	Q	HOLD
L	1	Н	L	Х	D	D	LOAD
L	↑	Н	Н	Н	X	Q	HOLD
L	↑	Н	Н	L	Х	Q plus 1	INCREMENT

TRI-STATE® is a registered trademark of National Semiconductor Corp

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage V_{CC} Input Voltage 5.5V Off-State Output Voltage -65°C to $+150^{\circ}\text{C}$ Storage Temperature

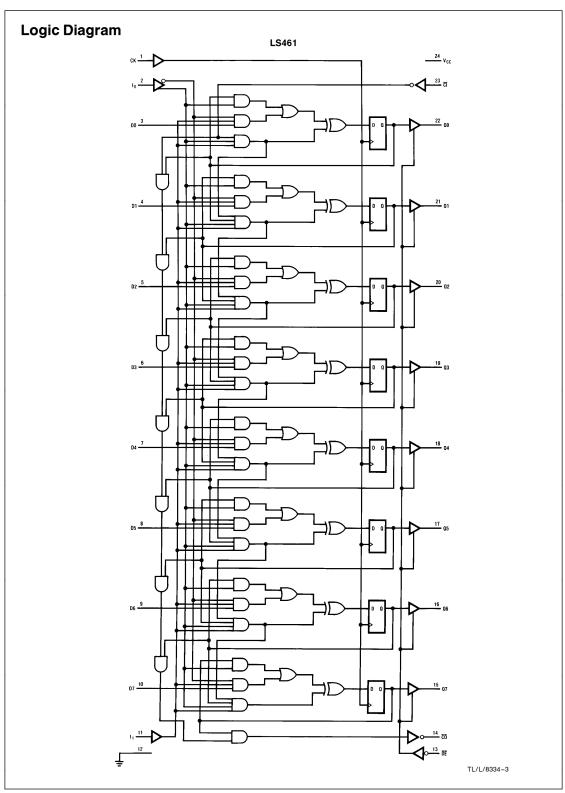
5.5V

Operating Conditions

Symbol	Parameter		Military		Commercial			Units	
Зуппьог	Farameter	Min	Тур	Max	Min	Тур	Max	Office	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V	
T _A	Operating Free-Air Temperature		-55		125*	0		75	°C
t _W	Width of Clock		40			35			ns
	Width of Glock	High	30			25			113
t _{SU}	Set Up Time Hold Time		60			50			ns
t _h			0	-15		0	-15		115

^{*}Case Temperature

Electrical Characteristics Over Operating Conditions


Symbol	Parameter	Test Conditions				Тур†	Max	Units
V _{IL}	Low-Level Input Voltage						0.8	V
V _{IH}	High-Level Input Voltage				2			V
V _{IC}	Input Clamp Voltage	V _{CC} = MIN	I_{I} = -18 mA				-1.5	V
I _{IL}	Low-Level Input Current	V _{CC} =MAX	$V_I = 0.4V$				-0.25	mA
I _{IH}	High-Level Input Current	V _{CC} =MAX	$V_1 = 2.4V$				25	μΑ
-I _I	Maximum Input Current	V _{CC} =MAX	V _I =5.5V				1	mA
V _{OL}	Low-Level Output Voltage	$V_{CC} = MIN$ $V_{IL} = 0.8V$	MIL	I _{OL} = 12 mA			0.5	V
		V _{IH} =2V	СОМ	I _{OL} =24 mA				
V _{OH}	High-Level Output Voltage	$V_{CC} = MIN$ $V_{IL} = 0.8V$	MIL	$I_{OH} = -2 \text{ mA}$	2.4			V
		V _{IH} =2V	СОМ	$I_{OH} = -3.2 \text{ mA}$				
I _{OZL}	Off-State Output Current	$V_{CC} = MAX$ $V_{IL} = 0.8V$		$V_O = 0.4V$			-100	μΑ
lozh		V _{IH} =2V		V _O =2.4V			100	μΑ
los	Output Short-Circuit Current*	V _{CC} =5.0V		V _{CC} =0V	-30		-130	mA
Icc	Supply Current	V _{CC} =MAX				120	180	mA

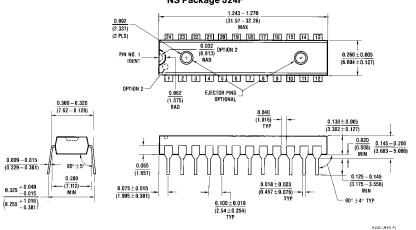
^{*}No more than one output should be shorted at a time and duration of the short-circuit should not exceed one second

Switching Characteristics Over Operating Conditions

Symbol	Parameter	Test Conditions	Military			Commercial			Units
Symbol	raiametei	(See Test Load)	Min	Тур	Max	Min	Тур	Max	Onits
f _{MAX}	Maximum Clock Frequency		10.5			12.5			MHz
t _{PD}	CBI to CBO Delay	$C_1 = 50 \text{ pF}$		35	60		35	50	ns
t _{PD}	Clock to Q	$R_1 = 200 \Omega$ $R_2 = 390 \Omega$		20	35		20	30	ns
t _{PD}	Clock to CO			55	95		55	80	ns
t _{PZX}	Output Enable Delay	112-390 11		35	55		35	45	ns
t _{PXZ}	Output Disable Delay			35	55		35	45	ns

 $[\]dagger$ All typical values are at VCC=5V, TA=25°C.

Physical Dimensions inches (millimeters) 0.025 (0.635) RAD 24 23 22 21 20 19 18 17 16 15 14 13 0.315 0.295 0.315 MAX (8.001) GLASS (7.493) MAX 1 2 3 4 5 6 7 8 9 10 11 12 0.030-0.055 (0.762-1.397) RAD TYP 0.060 ±0.005 0.290-0.320 GLASS SEALANT (1.524 ±0.127) TYP-(7.366-8.128) (0.508-1.778)0.180 0.225 (4.572) (5.715) MAX Å 4 4 0.008-0.012 (0.203 - 0.305)0.095 MAX (2.413) BOTH ENDS


0.100 ±0.010

(2.54 ±0.254) TYP

24-Pin Narrow Ceramic Dual-In-Line Package (J) Order Number DM54LS461J or DM74LS461J NS Package J24F

0.018 +0.003

(0.457 ±0.076)

24-Pin Narrow Plastic Dual-In-Line Package (N) Order Number DM74LS461N NS Package N24C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

0.310-0.410

(7.874-10.41)

(3.175)

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408