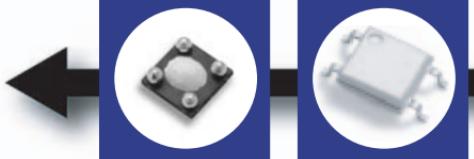


MICROCOUPLER™

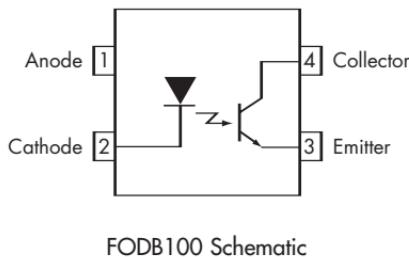

Low Profile Surface Mountable Optocoupler

FODB100 Sample Kit

FAIRCHILD
SEMICONDUCTOR

Introduction

Over the last few decades, there has been an exponential growth in the semiconductor sector spawning new products and technologies. This trend has been recently stimulated by a driving force towards miniaturization, resulting in more compact applications and products being introduced into the industrial, consumer and communications markets. Integrated Circuits have been at the center of this transition, with optocouplers being of no exception.

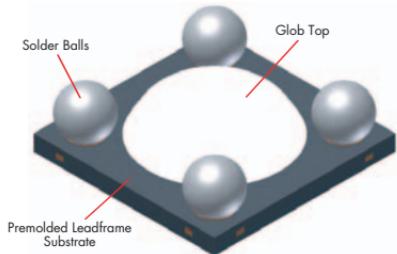


FODB100

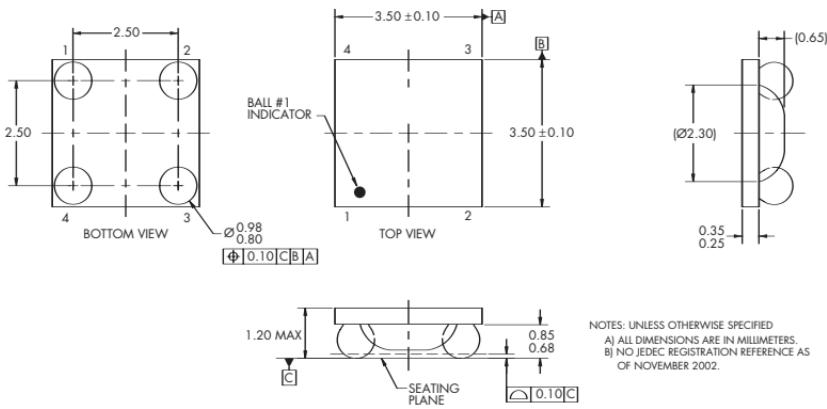
MICROCOUPLER™ Package

Description

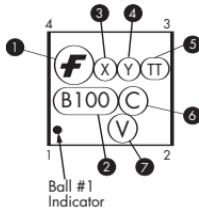
The FODB100 single channel MICROCOUPLER is an all Pb-free, low profile miniature surface mount optocoupler in a Ball Grid Array (BGA) package. It consists of an aluminum gallium arsenide infrared emitting diode driving a silicon phototransistor.


Features

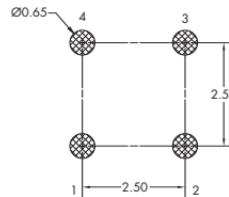
- Low profile package (1.20mm maximum mounted height)
- Land pattern allows for optimum board space savings
- High Current Transfer Ratio (CTR) at low IF
- Minimum isolation distance of 0.45mm
- High steady state isolation voltage of $2500\text{V}_{\text{rms}}$
- Data rates up to 120Kbits/s (NRZ)
- Minimum creepage distance of 2mm
- Wide operating temperature range of -40°C to $+125^{\circ}\text{C}$
- Available in tape and reel quantities of 3000 units
- Applicable to Pb-free infrared ray reflow (260°C max)
- UL, VDE certifications pending.


Advantages

- Improved CTR performance over temperature
- Wide operating temperature range as compared to conventional optocouplers
- Owing to its low profile, small volume and footprint, this package can further save on board real estate giving hardware designers more flexibility and allowing for overall systems cost savings
- High IR reflow soldering capability in lead free environments.

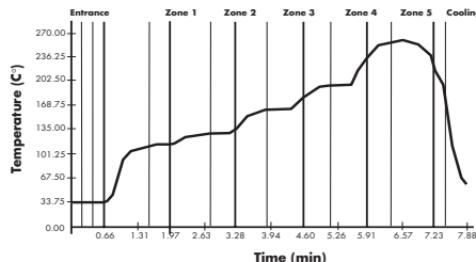

Package Information

Package Dimensions


Marking Information

Definitions

1	Fairchild logo
2	Device number [FODB100]
3	One digit year code e.g. "4" for 2004
4	6-week date code character
5	Die run code
6	Assembly package code
7	VDE 0884 approved [optional]


Recommended Land Pattern

Notes:

1. All dimensions in mm
2. It is recommended to use 6 mils of stencil thickness on PCB

Recommended Infrared Reflow Soldering Profile

Reflow Profile for Pb Free

	Convection Reflow
Average ramp-up rate [183°C to peak]	3°C/sec max
Preheat Temperature 125(± 25)°C to 200°C	60-180°C
Temperature maintained above 220°C	60-150 sec
Time within 5°C of actual peak temperature	20-40 sec
Peak temperature range	260 ± 5 °C
Ramp down rate	6°C/sec max
Time 25°C to peak temperature	8 min max

Note: Surface Mount Adhesives (SMA) isn't recommended to be used on the dome area (white dome).

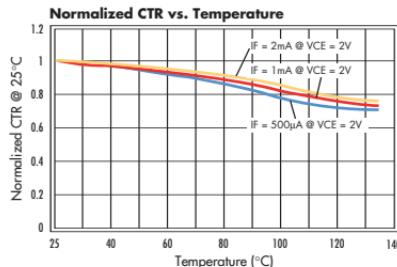
Electrical Specifications

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^\circ\text{C}$ unless otherwise specified)			
Parameters	Symbol	Value	Units
Total Package			
Storage Temperature	T_{STG}	-55 to +150	°C
Operating Temperature	T_{OPR}	-40 to +125	°C
Junction Temperature	T_j	130	°C
Emitter			
Continuous Forward Current	I_F (avg)	30	mA
Reverse Input Voltage	V_R	6	V
Power Dissipation	P_D	40	mW
Derate linearly (above 25°C)		0.6	mW/°C
Detector			
Continuous Collector Current		50	mA
Power Dissipation	P_D	150	mW
Derate linearly (above 25°C)		1.42	mW/°C
Collector-Emitter Voltage	V_{CEO}	75	V
Emitter-Collector Voltage	V_{ECO}	7	V

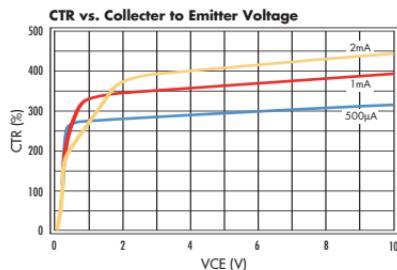
ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$)						
INDIVIDUAL COMPONENT CHARACTERISTICS						
Parameters	Test Conditions	Symbol	Min	Typ	Max	Unit
Emitter						
Forward Voltage	($I_F = 2\text{mA}$)	V_F	1.0		1.5	V
Reverse Current	($V_R = 6\text{V}$)	I_R			10	µA
Detector						
Breakdown Voltage Collector to Emitter	($I_C = 100\text{mA}$, $I_F = 0$)	BV_{CEO}	75			V
Emitter to Collector	($I_E = 100\mu\text{A}$, $I_F = 0$)	BV_{ECO}	7			
Collector Dark Current	($V_{\text{CE}} = 75\text{V}$, $I_F = 0$)	I_{CEO}			100	nA
Capacitance	($V_{\text{CE}} = 0\text{V}$, $f = 1\text{MHz}$)	C_{CE}		8		pF

Electrical Specifications

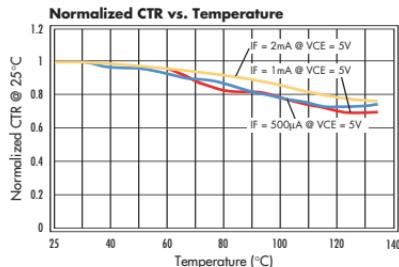
TRANSFER CHARACTERISTICS ($T_A = 25^\circ C$)						
Characteristic	Test Conditions	Symbol	Min	Typ	Max	Unit
Current Transfer Ratio ¹	($I_F = 1 \text{ mA}, V_{CE} = 5V$)	CTR	100			%
Saturated Current Transfer Ratio (Collector to Emitter)	($I_F = 1.6 \text{ mA}, V_{CE} = 0.4V$)	CTR _{CE(SAT)}	100			%
	($I_F = 1.0 \text{ mA}, V_{CE} = 0.4V$)		75			
Saturation Voltage	($I_F = 3.0 \text{ mA}, I_C = 1.8 \text{ mA}$) ($I_F = 1.6 \text{ mA}, I_C = 1.6 \text{ mA}$)	$V_{CE(SAT)}$			0.4	V
Rise Time (Non-Saturated)	($I_C = 2 \text{ mA}, V_{CE} = 5V$) ($R_L = 1 \text{ k}\Omega$)	t_r		1		μs
Fall Time (Non-Saturated)	($I_C = 2 \text{ mA}, V_{CE} = 5V$) ($R_L = 1 \text{ k}\Omega$)	t_f		5		
Propagation Delay High to Low	$I_F = 1.6 \text{ mA}, V_{CC} = 5.0V$ $R_L = 750$	T_{PHL}		3		μs
	$I_F = 1.6 \text{ mA}, V_{CC} = 5.0V$ $R_L = 4.7 \text{ k}\Omega$			12		
Propagation Delay Low to High	$I_F = 1.6 \text{ mA}, V_{CC} = 5.0V$ $R_L = 750$	T_{PLH}		5		μs
	$I_F = 1.6 \text{ mA}, V_{CC} = 5.0V$ $R_L = 4.7 \text{ k}\Omega$			19		

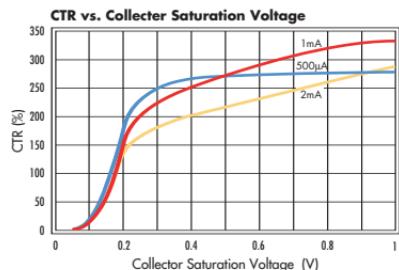

ISOLATION CHARACTERISTICS						
Characteristic	Test Conditions	Symbol	Min	Typ	Max	Unit
Steady State Isolation Voltage ²	($RH \leq 50\%$, $T_A = 25^\circ C, t = 1 \text{ sec}$)	V_{ISO}	2500			$V(\text{rms})$
Resistance (input to output) ²	($V_{IO} = 500 \text{ VDC}$)	R_{ISO}	10^{12}			
Capacitance (input to output) ²	$f = 1 \text{ MHz}$	C_{ISO}		0.3	0.5	pF

Notes:


- CTR bin (FODB100 only)
FODB101: 100% – 200%
FODB102: 150% – 300%
- Pin 1 and Pin 2 are shorted as input and Pin 3 and Pin 4 are shorted as output.

Typical Characteristic Curves


Normalized CTR at $V_{ce} = 2V$


CTR vs. V_{ce}

Normalized CTR at $V_{ce} = 5V$

CTR vs. $V_{ce(SAT)}$

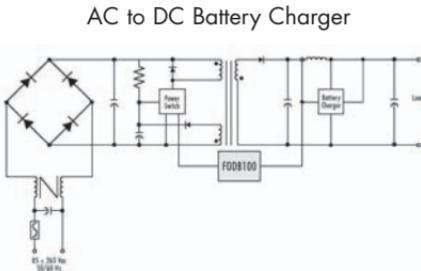
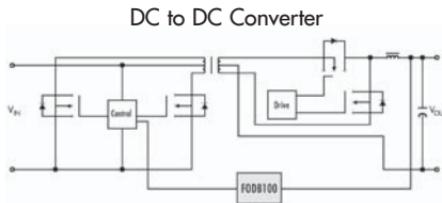
Applications, Markets, Safety Approvals

Primary Application:

Feedback loop switch mode power supply

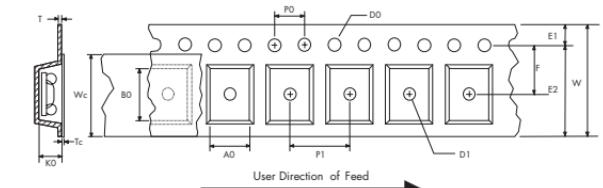
Secondary Application:

Ground loop isolation and signal to noise isolation



Target Markets:

- Communications – chargers, adapters
- Consumer – appliances, set top boxes
- Industrial – power supplies, motor control

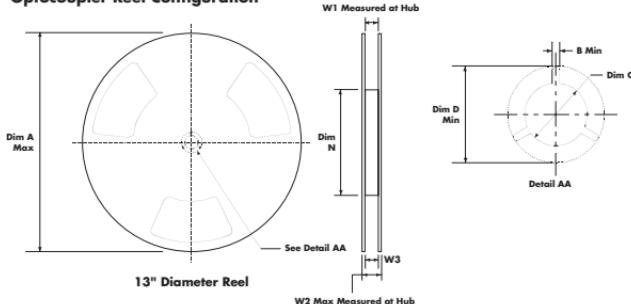
Safety Agency Approvals:


UL and VDE certifications pending

Application Schematic Diagrams:

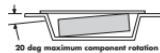
Tape and Reel Specifications

Optocoupler Embossed Carrier Tape Configuration

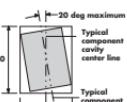


Dimensions are in millimeters

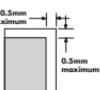
Dimensions are in millimeters														
Pkg Type	A0	B0	W	DO	D1	E1	E2	F	P1	P0	K0	T	Wc	Tc
Optocoupler (12mm)	3.80 ±0.10	3.80 ±0.10	12.0 ±0.3	1.50 ±0.25	1.50 ±0.25	1.75 ±0.20	10.25 ±0.20	5.50 ±0.05	8.0 ±1.0	4.0 ±1.0	1.40 ±0.10	0.279 ±0.02	0.2 ±0.3	0.06 ±0.02


Note: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

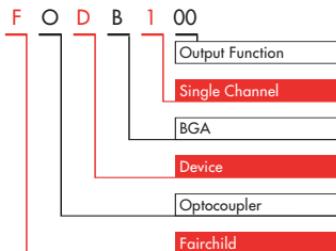
Optocoupler Reel Configuration



Dimensions are in inches and millimeters


Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (L5L-USL)
12mm	13" Dia	13.00	0.059	512 ±0.020/0.008	0.795	7.00	0.488 ±0.078/0.000	0.724	0.469 ±0.466
		330	1.3	13.0±0.2/0.2	20.2	178	13.4±2.0/0	18.4	11.9 ±15.4

Sketch A (Side or Front Sectional View) **Component Rotation**


Sketch B (Top View) Component Rotation

Sketch C (Top View) **Component lateral movement**

Ordering Information

FODB100

Roadmap

April 2004

Introduce single
channel, transistor
output:
FODB100

June 2004

Introduce 5300V
Viso version of
FODB100 series

July 2004

Introduce
quad channel,
transistor output:
FODBQ4XX

Q4 2004

Introduce
various output
functions with
single and
multiple channels

www.fairchildsemi.com/microcoupler

Across the board. Around the world.TM

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks:
ACExTM, Across the board. Around the world.TM, ActiveArrayTM, BottomlessTM, CoolFETTM, CROSSVOLTTM, DOMETM, EcoSPARKTM, E²CMOSTTM, EnSigmaTM, FACTTM, FACT Quiet SeriesTM, FAST[®], FAST_TTM, FPSTTM, FRFETTM, GlobalOptoisolatorTM, GTOTM, HiSeTM, iCTM, i-LoTM, ImpliedDisconnectedTM, ISOPLANARTM, LittleFETTM, MICROCOUPLERTM, MicroFETTM, MicroPakTM, MICROWIRETM, MSXTM, MSXProTM, OCXTTM, OCXProTM, OPTOLOGIC[®], OPTOPLANARTM, PACMANTM, POPTTM, Power247TM, PowerSaverTM, PowerTrench[®], Programmable Active DroopTM, QFET[®], QSTTM, QT OptoelectronicsTM, Quiet SeriesTM, RapidConfigureTM, RapidConnectTM, SILENT SWITCHER[®], SMART STARTTM, SPMTM, StealthTM, SuperFETTM, SuperSOTTM3, SuperSOTTM6, SuperSOTTM8, SyncFETTM, The Power Franchise[®], TinyLogic[®], TINYOPTOTM, TruTranslationTM, UHCTM, UltraFET[®], VCXTM