74 DE 7294621 0001329 7 T-01-13

Passivated Rectifier

TRANSIENT VOLTAGE PROTECTED 2.5 Amps 200-1000 Volts

A14 SERIES 1N5059 1N5060 1N5061 1N5062

A14P

THE GENERAL ELECTRIC A14 IS A 2.5 AMPERE RATED, AXIAL-LEADED GENERAL PURPOSE RECTIFIER. DUAL HEATSINK CONSTRUCTION PROVIDES RIGID MECHANICAL SUPPORT FOR THE PELLET AND EXCELLENT THERMAL CHARACTERISTICS. PASSIVATION AND PROTECTION OF THE SILICON PELLETS PN JUNCTION ARE PROVIDED BY SOLID GLASS; NO ORGANIC MATERIALS ARE PRESENT WITHIN THE HERMETICALLY SEALED PACKAGE.

The A14 is "Transient-Voltage Protected." This device will dissipate up to 1000 watts in the reverse direction without damage. Voltage Transients generated by household or industrial power lines are dissipated.

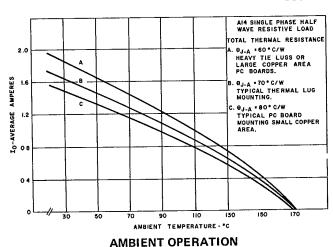
absolute maximum ratings: (25°C unless otherwise specified)

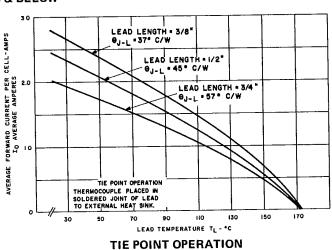
*Reverse Voltage (-65°C to +175°C, T _J) (-65°C to +165°C for 1N5062 and A14P)	1 N5059 (A148)	1N5060 (A14D)	1N5061 (A14M)	1N5062 (A14N)	A14P	
Working Peak, V_{RWM} DC, V_R	200 200	400 400	600 600	800 800	1000 1000	Volts Volts
*Average Forward Current, I _o *100°C Ambient (90°C for 1N5062 and A14P) 25°C Ambient (See Rating Curves)	—		— 1.0 — — 2.5 —		→	Amp Amp
*Peak Surge Forward Current, I _{FSM} Non-repetitive, .0083 sec., half sine wave, Full Load JEDEC Method No Load (25°C Case)	4		50 65		=	Amps Amps
Peak Surge Forward Current, I _{FSM} Non-repetitive, .001 sec., half sine wave, Full Load No Load (25°C Case)	4		— 90 — — 100 —	····		Amps Amps
*Junction Operating and Storage Temperature Range, T _J & T _{STG} I ² t, RMS (for fusing), .001 to .01 sec. Maximum Avalanche Voltage	4	65 to +175		→ -65 to +		°C Amps² sec. Volts
Peak Non-repetitive Reverse Power Rating, P_{RM} 20 $\mu sec.$, half sine wave, at Max. T_J *100 $\mu sec.$, JEDEC			— 1000 — — 450 —			Watts Watts

*Mounting: Any position. Lead Temperature 290°C maximum to 1/8 inch from body for 5 seconds maximum during mounting.

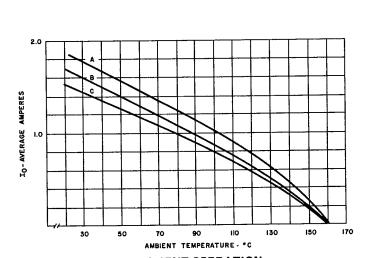
electrical characteristics: (25°C unless othe	rwise specific	eđ)				
*Maximum Forward Voltage Drop, V_F , 1A, $T_J=75^{\circ}{ m C}$			- 1.2 -			Vol
$\begin{array}{ll} \text{Maximum Reverse Current, I}_{\text{R}}, \text{ at Rated V}_{\text{RRM}}; \\ \text{T}_{\text{J}} = 25^{\circ}\text{C} \\ \text{*T}_{\text{J}} = 165^{\circ}\text{C} \\ \text{*T}_{\text{J}} = 175^{\circ}\text{C} \end{array}$	300	300	- 5.0 — 200	200	200	μΑ μΑ μΑ
Typical Reverse Current, I_R , at Rated V_{RRM}	◆		- 1.0 —			μΑ
Typical Reverse Current, I_R $T_J = 25$ °C $T_J = 100$ °C	0.2 20	0.2 20	0.3 20	0.5 30	0.5 30	μ Α μΑ
Typical Reverse Recovery Time, T _{RR}	◆		- 3 -			μse
Maximum Reverse Recovery Time, T _{RR}	◆		- 6 -			μSe
Recovery circuit per MIL-S-19500/286C. *JEDEC Registered data.	290 /	N 5059.	-1			

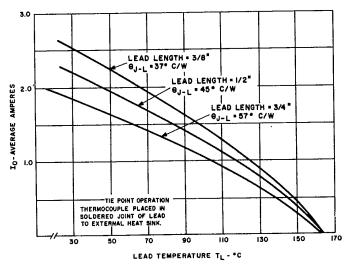
4 DE 7294621 0001330 3

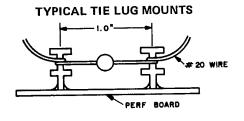

1N5059 1N5060 1N5061

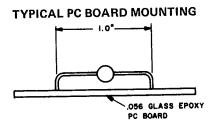

1N5062

A14P


MAXIMUM ALLOWABLE DC OUTPUT CURRENT RATINGS

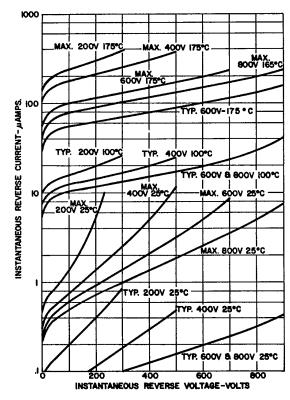

SINGLE PHASE 600 VOLTS & BELOW


RESISTIVE OR INDUCTIVE LOAD 800 AND 1000 VOLTS



AMBIENT OPERATION

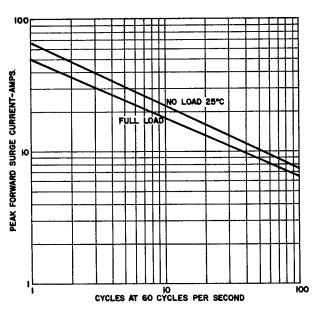
TIE POINT OPERATION



/N 5059 - 2_

1N5059
1N5060
1N5061
1N5062
Δ14Ρ

TYPICAL CHARACTERISTICS



PICAL TEMPERATURE MAX. 25°C INSTANTANEOUS FORWARD VOLTAGE-VOLTS. FORWARD TEMPERATURE COEFFICIENT-my/°C

FORWARD CHARACTERISTICS

REVERSE CHARACTERISTICS AT SELECTED

JUNCTION TEMPERATURES

REVERSE POWER-WATTS

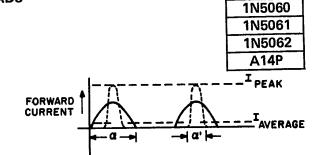
MAXIMUM NON-REPETITIVE AVALANCHE SURGE POWER

MAXIMUM NON-REPETITIVE MULTICYCLE FORWARD SURGE CURRENT

1N5059-3

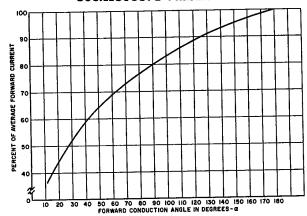
292

1N5059


CAPACITIVE LOADS

Current Derating (capacitive load)

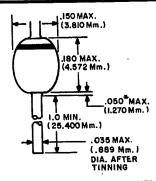
Average forward current as specified under MAXIMUM RATINGS page 1 and derating curves for high temperature operation page 2, must be corrected for applications with capacitive loads. As the current conduction angle, α' , is decreased, the peak current required to maintain the same average current increases, i.e., the peak-to-average current ratio increases from 3.14. Figure 9 gives the derating required based on this increase in peak to average current ratio for sine wave operation. For more complete information consult Application Note 200.30.


- METHOD: 1. Determine conduction angle α' in degrees for particular circuit as designed.
 - 2. Enter Figure 9 for the particular conduction angle and read corresponding percent of forward current per cell.
 - 3. Multiply this value times average forward current for resistive load from figures on page 2 as given for the actual ambient or tiepoint temperature required.

TYPICAL EXAMPLES (25°C Ambient Temperature)					
	Example No. 1	Example No. 2	Example No. 3	Example No. 4	Units
Input Voltage	100	100	300	300	Volts
D.C. (Average) Output Voltage	34	75	180	270	Volts
Surge Resistor	1	1	3.5	3.5	Ohms
Load Current	0.5	0.5	0.5	0.5	Amps.
Input Filter Capacitance	30	100	30	100	μF.
Conduction Angle	170	70	90	50	Degrees
Rated Average Current (Resistive Load)	1	1	1	1	Amp.
Rated Average Current (Capacitive Load)	0.98	0.73	0.80	0.65	Amp.

a = CONDUCTION ANGLE (180°) a' = SHORTENED CONDUCTION ANGLE

OSCILLOSCOPE PRESENTATION



9. DERATING FOR SHORTENED **CONDUCTION ANGLE**

INTERNAL CONSTRUCTION

- 1. Dual heatsink design for maximum heat dissipation under both surge and continuous duty. No fragile "whiskers" or S leads with their potential trouble spots.
- 2. Glass Package. No internal cavity to act as potential source of moisture or contamination on junction. Temperature coefficient of the glass is matched with the internal parts.
- 3. Diffused silicon junction passivated surface.

Marking band to appear on cathode end.

OUTLINE DRAWING

ALL DIMENTIONS ARE IN INCHES AND (METRIC) *WELD AND SOLDER FLASH NOT CONTROLLED IN THIS AREA

TYPICAL APPLICATIONS

- FREE-WHEELING RECTIFIERS
- TIME DELAY CIRCUITS
- POWER LOGIC CIRCUITS
- ARC SUPPRESSION
- **BATTERY CHARGERS**
- TV DAMPER DIODES

- TV AND RADIO POWER SUPPLIES
- COMMUNICATION EQUIPMENT
- S.C.R. TRIGGER CIRCUITS
- SMALL PORTABLE APPLIANCES
- GENERAL PURPOSE POWER SUPPLIES
- LOW LEVEL LIMITERS

293 /N5059-4