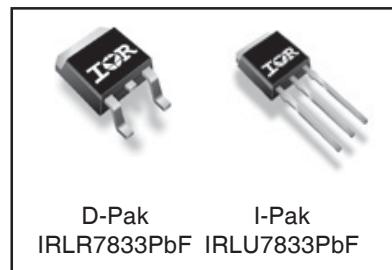


International **IR** Rectifier


PD - 95092B

IRLR7833PbF

IRLU7833PbF

HEXFET® Power MOSFET

V_{DSS}	R_{DS(on)} max	Q_g
30V	4.5mΩ	33nC

Applications

- High Frequency Synchronous Buck
Converters for Computer Processor Power
- High Frequency Isolated DC-DC
Converters with Synchronous Rectification
for Telecom and Industrial Use
- Lead-Free

Benefits

- Very Low RDS(on) at 4.5V V_{GS}
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage
and Current

Absolute Maximum Ratings

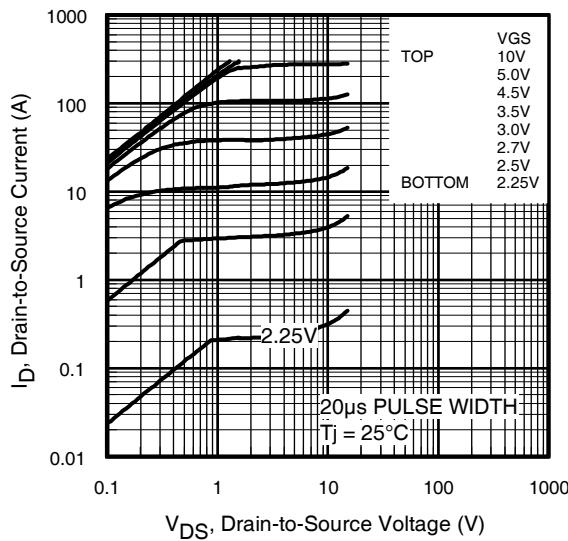
	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	30	V
V _{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	140④	A
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	99④	
I _{DM}	Pulsed Drain Current ①	560	W
P _D @ T _C = 25°C	Maximum Power Dissipation ⑤	140	
P _D @ T _C = 100°C	Maximum Power Dissipation ⑤	71	W/°C
	Linear Derating Factor	0.95	
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to + 175	°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw	10 lbf·in (1.1N·m)	

Thermal Resistance

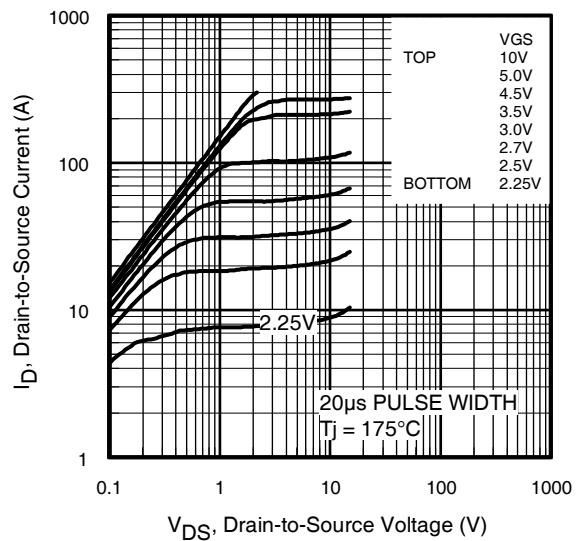
	Parameter	Typ.	Max.	Units
R _{θJC}	Junction-to-Case	—	1.05	°C/W
R _{θJA}	Junction-to-Ambient (PCB Mount) ⑤	—	50	
R _{θJA}	Junction-to-Ambient	—	110	

Notes ① through ⑤ are on page 11

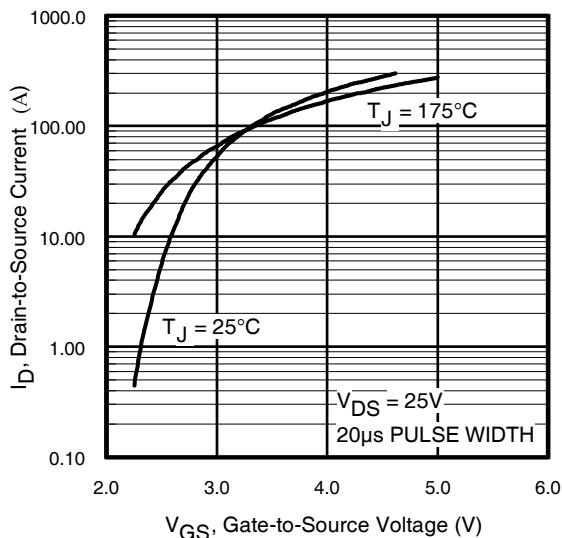
Static @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)


	Parameter	Min.	Typ.	Max.	Units	Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	30	—	—	V	$V_{GS} = 0\text{V}$, $I_D = 250\mu\text{A}$
$\Delta BV_{DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	—	19	—	$\text{mV}/^\circ\text{C}$	Reference to 25°C , $I_D = 1\text{mA}$
$R_{DS(on)}$	Static Drain-to-Source On-Resistance	—	3.6	4.5	$\text{m}\Omega$	$V_{GS} = 10\text{V}$, $I_D = 15\text{A}$ ④
		—	4.4	5.5		$V_{GS} = 4.5\text{V}$, $I_D = 12\text{A}$ ④
		—	—	—		$V_{DS} = V_{GS}$, $I_D = 250\mu\text{A}$
$V_{GS(th)}$	Gate Threshold Voltage	1.4	—	2.3	V	$V_{DS} = V_{GS}$, $I_D = 250\mu\text{A}$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient	—	-6.0	—	$\text{mV}/^\circ\text{C}$	
I_{DSS}	Drain-to-Source Leakage Current	—	—	1.0	μA	$V_{DS} = 24\text{V}$, $V_{GS} = 0\text{V}$
		—	—	150		$V_{DS} = 24\text{V}$, $V_{GS} = 0\text{V}$, $T_J = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Forward Leakage	—	—	100	nA	$V_{GS} = 20\text{V}$
	Gate-to-Source Reverse Leakage	—	—	-100		$V_{GS} = -20\text{V}$
g_{fs}	Forward Transconductance	66	—	—	S	$V_{DS} = 15\text{V}$, $I_D = 12\text{A}$
Q_g	Total Gate Charge	—	33	50	nC	
Q_{gs1}	Pre-Vth Gate-to-Source Charge	—	8.7	—		$V_{DS} = 16\text{V}$
Q_{gs2}	Post-Vth Gate-to-Source Charge	—	2.1	—		$V_{GS} = 4.5\text{V}$
Q_{gd}	Gate-to-Drain Charge	—	13	—		$I_D = 12\text{A}$
Q_{godr}	Gate Charge Overdrive	—	9.9	—		See Fig. 16
Q_{sw}	Switch Charge ($Q_{gs2} + Q_{gd}$)	—	15	—		
Q_{oss}	Output Charge	—	22	—	nC	$V_{DS} = 16\text{V}$, $V_{GS} = 0\text{V}$
$t_{d(on)}$	Turn-On Delay Time	—	14	—	ns	$V_{DD} = 15\text{V}$, $V_{GS} = 4.5\text{V}$ ④
t_r	Rise Time	—	6.9	—		$I_D = 12\text{A}$
$t_{d(off)}$	Turn-Off Delay Time	—	23	—		Clamped Inductive Load
t_f	Fall Time	—	15	—		
C_{iss}	Input Capacitance	—	4010	—	pF	$V_{GS} = 0\text{V}$
C_{oss}	Output Capacitance	—	950	—		$V_{DS} = 15\text{V}$
C_{rss}	Reverse Transfer Capacitance	—	470	—		$f = 1.0\text{MHz}$

Avalanche Characteristics


	Parameter	Typ.	Max.	Units
E_{AS}	Single Pulse Avalanche Energy ②	—	530	mJ
I_{AR}	Avalanche Current ①	—	20	A
E_{AR}	Repetitive Avalanche Energy ①	—	14	mJ

Diode Characteristics


	Parameter	Min.	Typ.	Max.	Units	Conditions
I_s	Continuous Source Current (Body Diode)	—	—	140 ④	A	MOSFET symbol showing the integral reverse p-n junction diode.
I_{SM}	Pulsed Source Current (Body Diode) ①⑥	—	—	560	A	
V_{SD}	Diode Forward Voltage	—	—	1.0	V	$T_J = 25^\circ\text{C}$, $I_s = 12\text{A}$, $V_{GS} = 0\text{V}$ ④
t_{rr}	Reverse Recovery Time	—	39	58	ns	$T_J = 25^\circ\text{C}$, $I_F = 12\text{A}$, $V_{DD} = 15\text{V}$
Q_{rr}	Reverse Recovery Charge	—	37	55	nC	$dI/dt = 100\text{A}/\mu\text{s}$ ④
t_{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

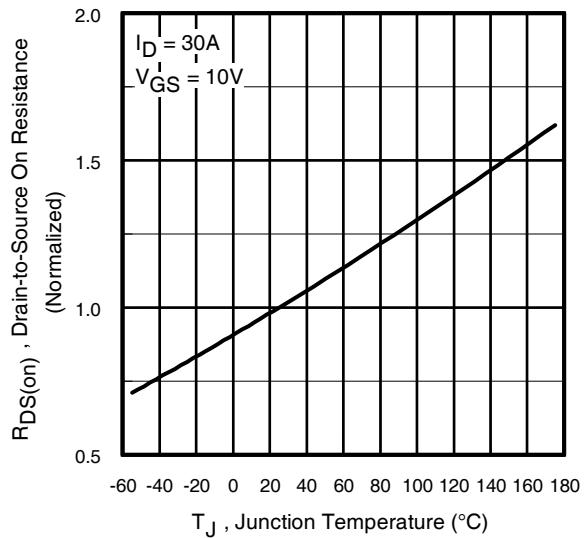
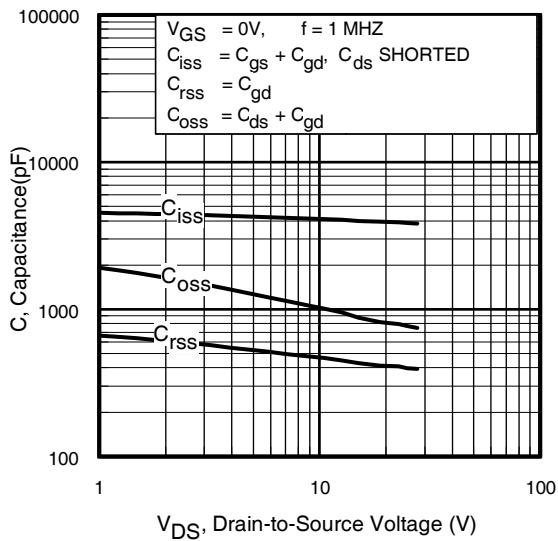
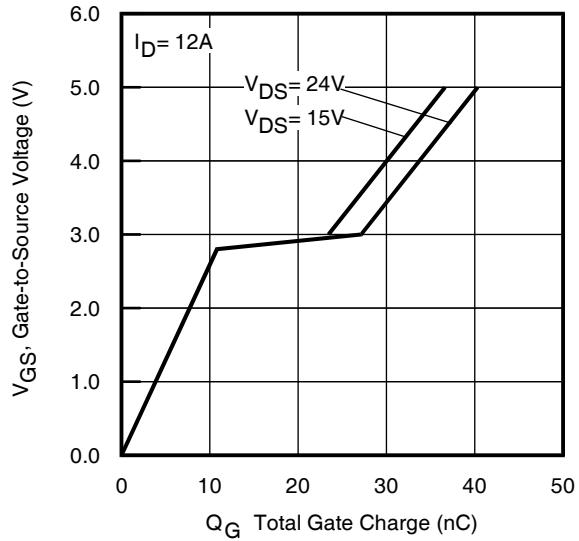
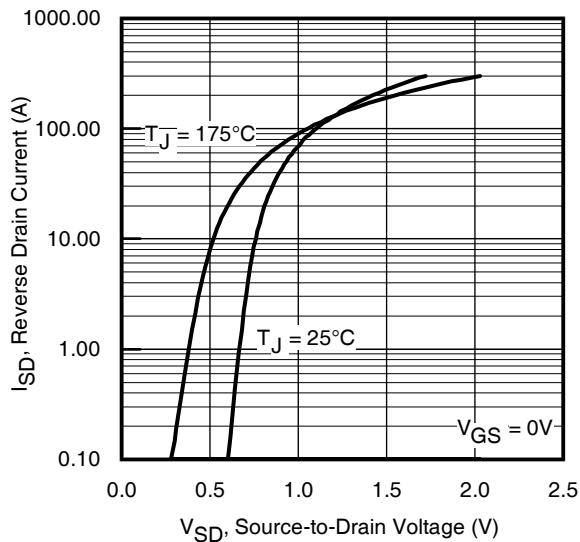

Fig 1. Typical Output Characteristics

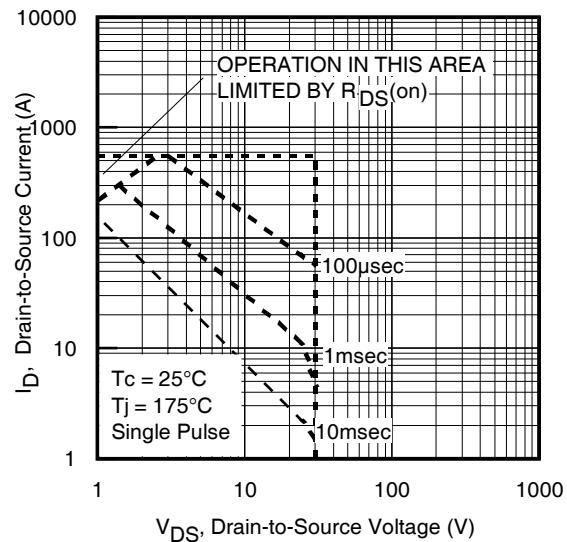
Fig 2. Typical Output Characteristics

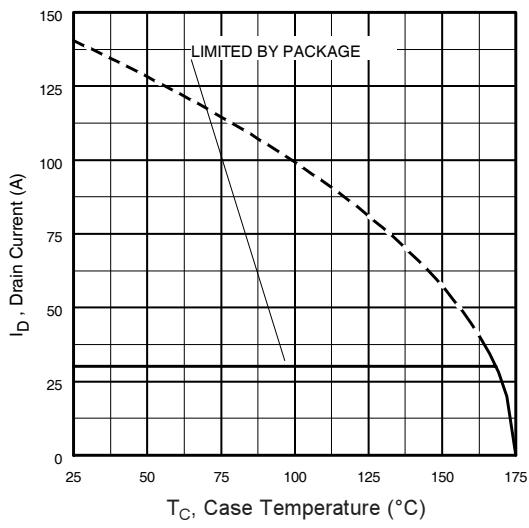

Fig 3. Typical Transfer Characteristics

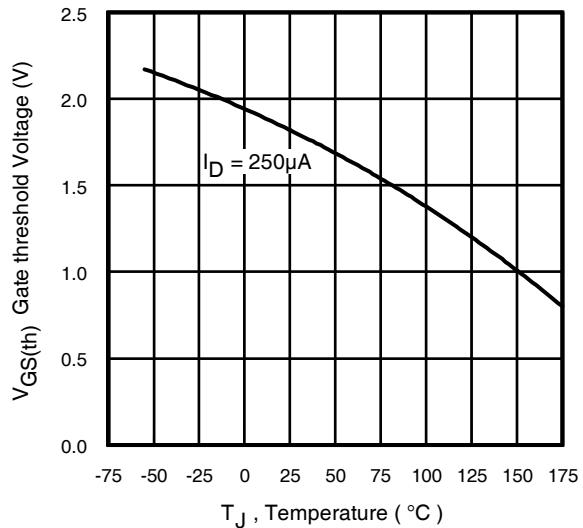

Fig 4. Normalized On-Resistance
vs. Temperature

IRLR/U7833PbF


International
IR Rectifier


Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage


Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage


Fig 7. Typical Source-Drain Diode
Forward Voltage

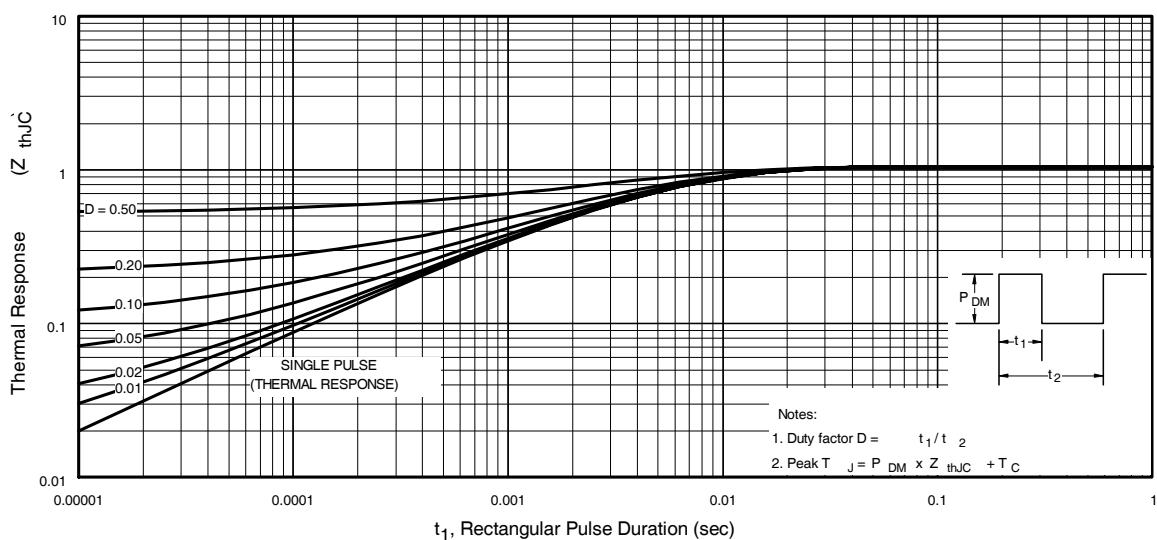

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs.
Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRLR/U7833PbF

International
Rectifier

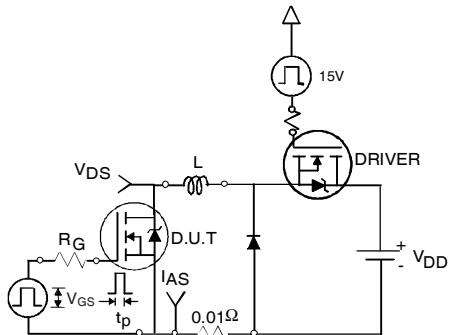


Fig 12a. Unclamped Inductive Test Circuit

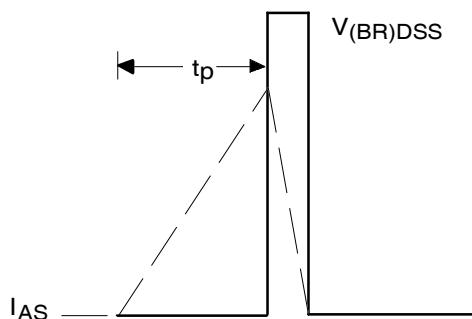


Fig 12b. Unclamped Inductive Waveforms

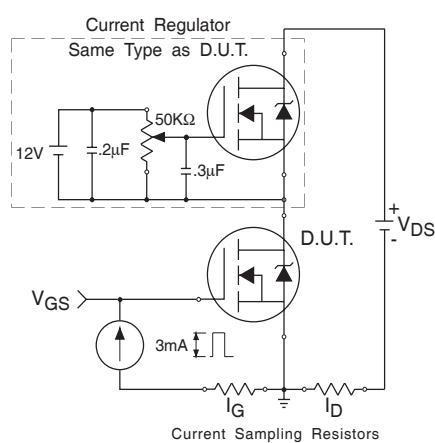


Fig 13. Gate Charge Test Circuit

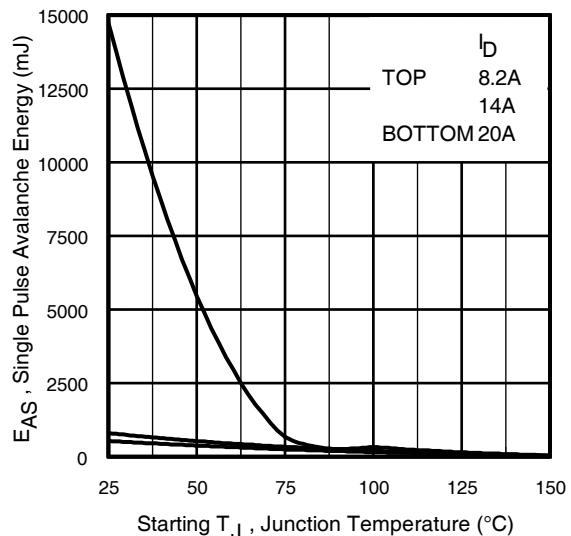


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

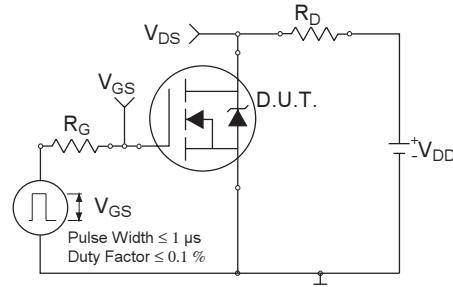


Fig 14a. Switching Time Test Circuit

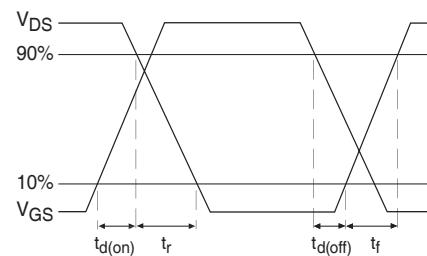
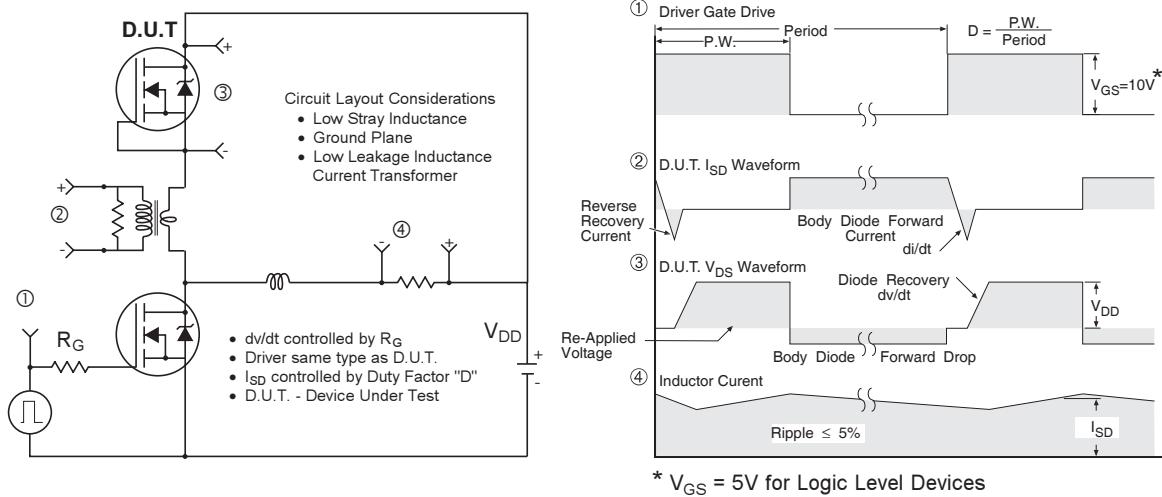
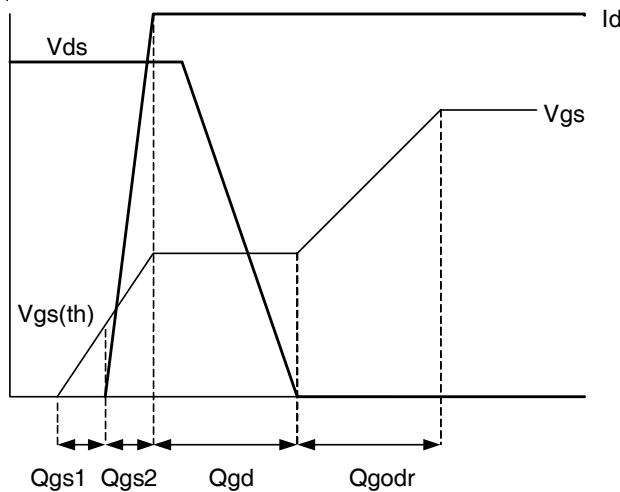




Fig 14b. Switching Time Waveforms

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16. Gate Charge Waveform

IRLR/U7833PbF

International
IR Rectifier

Power MOSFET Selection for Non-Isolated DC/DC Converters

Control FET

Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the $R_{ds(on)}$ of the MOSFET, but these conduction losses are only about one half of the total losses.

Power losses in the control switch Q1 are given by;

$$P_{loss} = P_{conduction} + P_{switching} + P_{drive} + P_{output}$$

This can be expanded and approximated by;

$$\begin{aligned} P_{loss} = & \left(I_{rms}^2 \times R_{ds(on)} \right) \\ & + \left(I \times \frac{Q_{gd}}{i_g} \times V_{in} \times f \right) + \left(I \times \frac{Q_{gs2}}{i_g} \times V_{in} \times f \right) \\ & + \left(Q_g \times V_g \times f \right) \\ & + \left(\frac{Q_{oss}}{2} \times V_{in} \times f \right) \end{aligned}$$

This simplified loss equation includes the terms Q_{gs2} and Q_{oss} which are new to Power MOSFET data sheets.

Q_{gs2} is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q_{gs1} and Q_{gs2} , can be seen from Fig 16.

Q_{gs2} indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to I_{dmax} at which time the drain voltage begins to change. Minimizing Q_{gs2} is a critical factor in reducing switching losses in Q1.

Q_{oss} is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Q_{oss} is formed by the parallel combination of the voltage dependant (non-linear) capacitance's C_{ds} and C_{dg} when multiplied by the power supply input buss voltage.

Synchronous FET

The power loss equation for Q2 is approximated by;

$$\begin{aligned} P_{loss} &= P_{conduction} + P_{drive} + P_{output}^* \\ P_{loss} &= \left(I_{rms}^2 \times R_{ds(on)} \right) \\ &+ \left(Q_g \times V_g \times f \right) \\ &+ \left(\frac{Q_{oss}}{2} \times V_{in} \times f \right) + \left(Q_{rr} \times V_{in} \times f \right) \end{aligned}$$

*dissipated primarily in Q1.

For the synchronous MOSFET Q2, $R_{ds(on)}$ is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q_{oss} and reverse recovery charge Q_{rr} both generate losses that are transferred to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs' susceptibility to Cdv/dt turn on.

The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and V_{in} . As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current. The ratio of Q_{gd}/Q_{gs1} must be minimized to reduce the potential for Cdv/dt turn on.

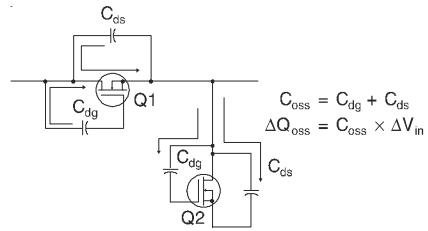
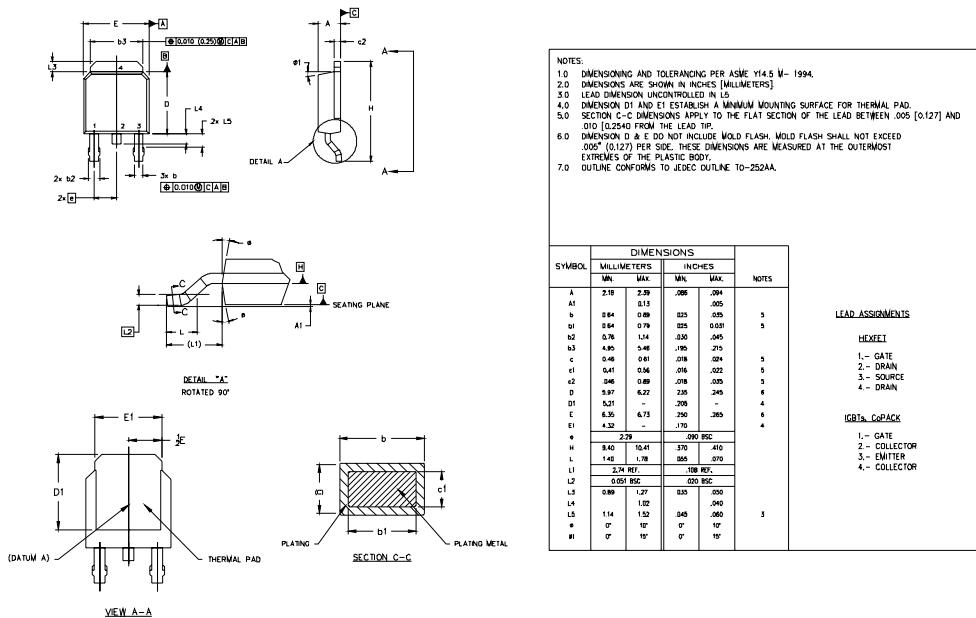
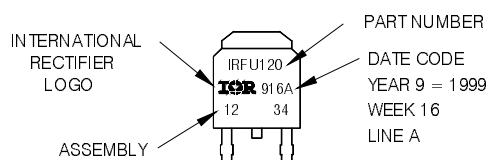
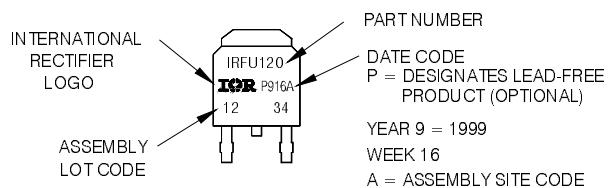



Figure A: Q_{oss} Characteristic

D-Pak (TO-252AA) Package Outline

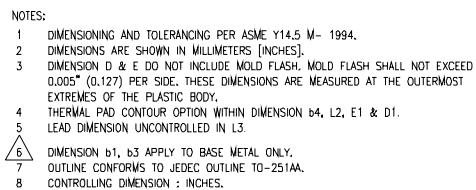

Dimensions are shown in millimeters (inches)


D-Pak (TO-252AA) Part Marking Information

EXAMPLE: THIS IS AN IRFR120
WITH ASSEMBLY
LOT CODE 1234
ASSEMBLED ON WW 16, 1999
IN THE ASSEMBLY LINE 'A'

Note: 'P' in assembly line position
indicates 'Lead-Free'

OR


Note: For the most current drawing please refer to IR website at <http://www.irf.com/package/>
www.irf.com

IRLR/U7833PbF

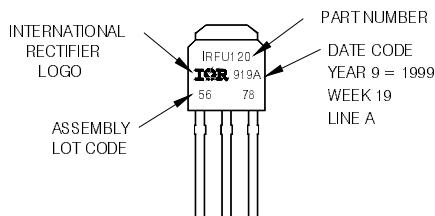
International
IR Rectifier

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

Symbol	Dimensions				Notes	
	Millimeters		Inches			
	Min.	Max.	Min.	Max.		
A	2.18	2.39	0.086	0.094		
A1	0.89	1.14	0.035	0.045		
b	0.64	0.89	0.025	0.035		
b1	0.64	0.79	0.025	0.031		
b2	0.76	1.14	0.030	0.045		
b3	0.76	1.04	0.030	0.041		
b4	5.00	5.46	0.195	0.215		
c	0.46	0.61	0.018	0.024		
c1	0.41	0.56	0.016	0.022		
c2	0.46	0.86	0.018	0.035		
D	5.97	6.22	0.235	0.245	3, 4	
D1	5.21	—	0.205	—	4	
E	6.35	6.73	0.250	0.265	3, 4	
E1	4.32	—	0.170	—	4	
e	2.29		0.090 95C			
L	8.89	9.60	0.350	0.380		
L1	1.91	2.29	0.075	0.090		
L2	0.69	1.27	0.035	0.050		
L3	1.14	1.52	0.045	0.060	5	
ø1	ø	15'	ø	15'		

LEAD ASSIGNMENTS

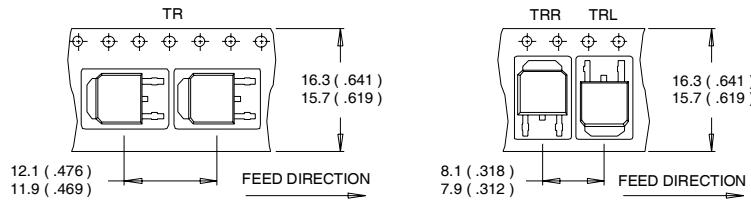

HEXFET

I-Pak (TO-251AA) Part Marking Information

EXAMPLE: THIS IS AN IRFU120
WITH ASSEMBLY
LOT CODE 5678
ASSEMBLED ON WW 19, 1999
IN THE ASSEMBLY LINE 'A'

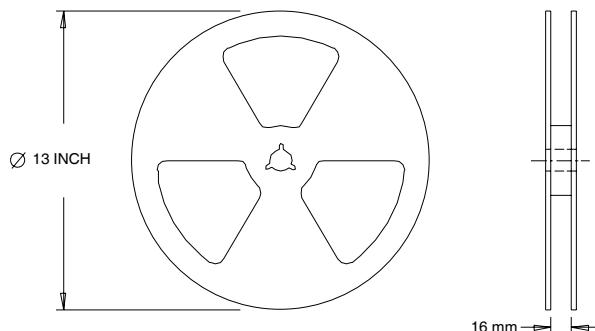
Note: 'P' in assembly line position indicates 'Lead-Free'

OR


The diagram shows a surface-mount component with the following markings:

- INTERNATIONAL RECTIFIER LOGO**: Located at the top left.
- IRFU120**: The main part number.
- DATE CODE**: P919A, indicating the week and year of manufacture.
- P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL)**: A note explaining the 'P' suffix.
- YEAR 9 = 1999**: The year of manufacture.
- WEEK 19**: The week of manufacture.
- A = ASSEMBLY SITE CODE**: The assembly site code.
- ASSEMBLY LOT CODE**: P919A, located at the bottom left.

Note: For the most current drawing please refer to IR website at <http://www.irf.com/package/>


D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES :

1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :

1. OUTLINE CONFORMS TO EIA-481.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^\circ\text{C}$, $L = 2.6\text{mH}$, $R_G = 25\Omega$, $I_{AS} = 20\text{A}$.
- ③ Pulse width $\leq 400\mu\text{s}$; duty cycle $\leq 2\%$.
- ④ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 30A.
- ⑤ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Note: For the most current drawing please refer to IR website at <http://www.irf.com/package/>

Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR's Web site.

International
IR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.04/2008