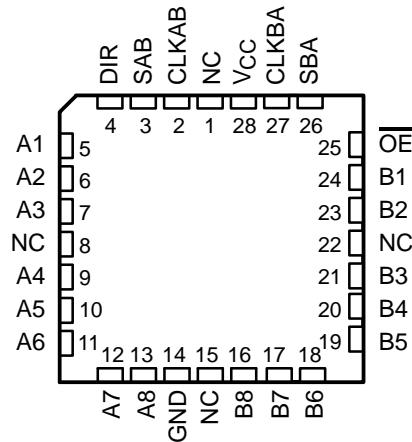


SN54HC646, SN74HC646 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS


SCLS150C – DECEMBER 1982 – REVISED MARCH 2003

- Wide Operating Voltage Range of 2 V to 6 V
- High-Current 3-State Outputs Can Drive Up To 15 LSTTL Loads
- Low Power Consumption, 80- μ A Max I_{CC}
- Typical $t_{pd} = 11$ ns
- ± 6 -mA Output Drive at 5 V
- Low Input Current of 1 μ A Max
- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- True Data Paths

SN54HC646 . . . JT OR W PACKAGE
SN74HC646 . . . DW OR NT PACKAGE
(TOP VIEW)

SN54HC646 . . . FK PACKAGE
(TOP VIEW)

NC – No internal connection

description/ordering information

The 'HC646 devices consist of bus-transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'HC646 devices.

Output-enable (\overline{OE}) and direction-control (DIR) inputs control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either or both registers.

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. DIR determines which bus receives data when \overline{OE} is active (low). In the isolation mode (\overline{OE} high), A data may be stored in one register and/or B data may be stored in the other register.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	PDIP – NT	Tube	SN74HC646NT	SN74HC646NT
	SOIC – DW	Tube	SN74HC646DW	HC646
		Tape and reel	SN74HC646DWR	
-55°C to 125°C	CDIP – JT	Tube	SNJ54HC646JT	SNJ54HC646JT
	CFP – W	Tube	SNJ54HC646W	SNJ54HC646W
	LCCC – FK	Tube	SNJ54HC646FK	SNJ54HC646FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

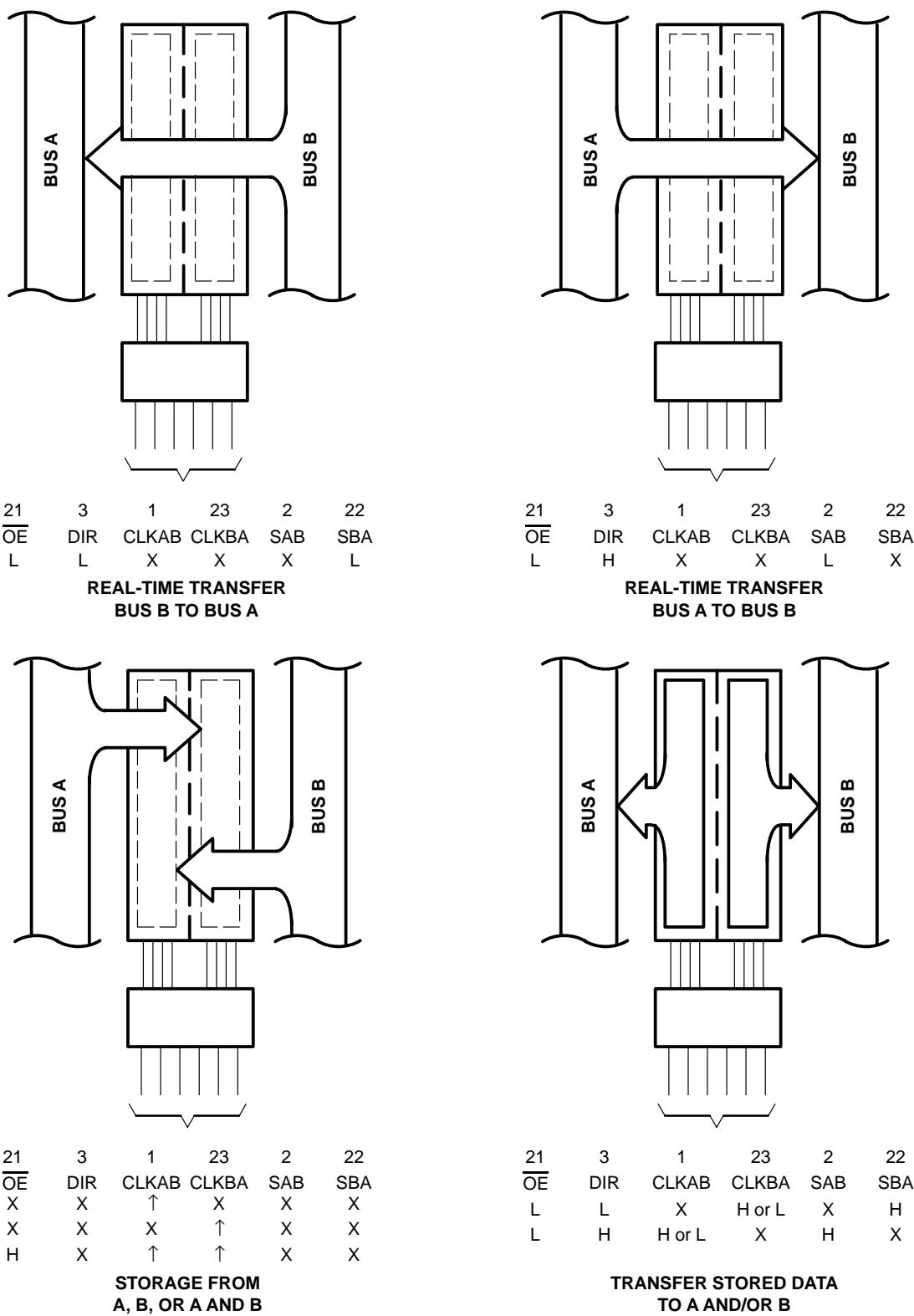
**SN54HC646, SN74HC646
OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS**

SCLS150C – DECEMBER 1982 – REVISED MARCH 2003

description/ordering information (continued)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

When an output function is disabled, the input function is still enabled and can be used to store data. Only one of the two buses, A or B, may be driven at a time.


FUNCTION TABLE

OE	DIR	INPUTS			DATA I/O		OPERATION OR FUNCTION	
		CLKAB	CLKBA	SAB	SBA	A1–A8	B1–B8	
X	X	↑	X	X	X	Input	Unspecified†	Store A, B unspecified†
X	X	X	↑	X	X	Unspecified†	Input	Store B, A unspecified†
H	X	↑	↑	X	X	Input	Input	Store A and B data
H	X	H or L	H or L	X	X	Input disabled	Input disabled	Isolation, hold storage
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	H or L	X	H	Output	Input	Stored B data to A bus
L	H	X	X	L	X	Input	Output	Real-time A data to B bus
L	H	H or L	X	H	X	Input	Output	Stored A data to B bus

† The data-output functions can be enabled or disabled by various signals at OE and DIR. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

SN54HC646, SN74HC646
OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS

SCLS150C – DECEMBER 1982 – REVISED MARCH 2003

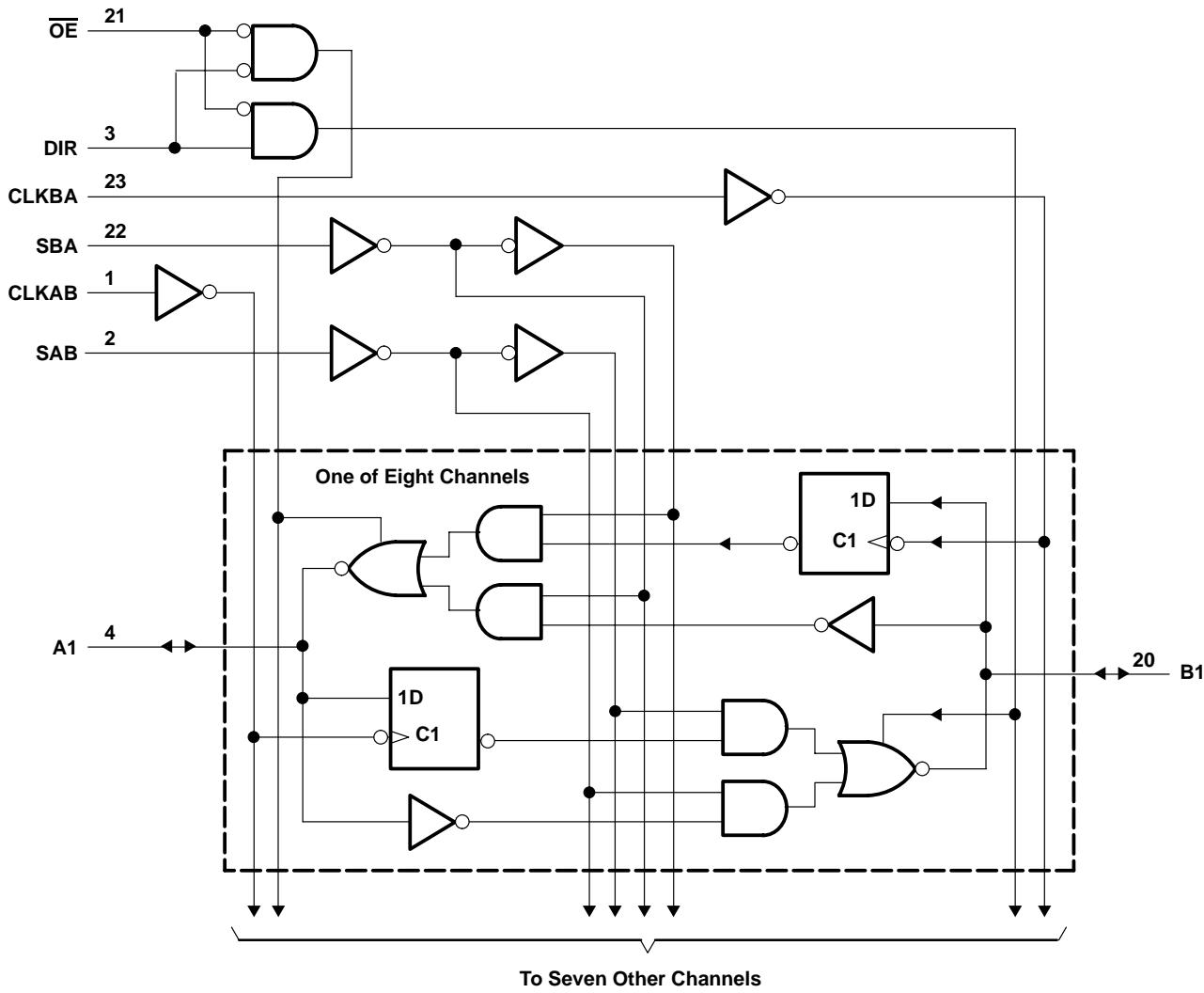

Pin numbers shown are for the DW, JT, NT, and W packages.

Figure 1. Bus-Management Functions

SN54HC646, SN74HC646 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

SCLS150C – DECEMBER 1982 – REVISED MARCH 2003

logic diagram (positive logic)

Pin numbers shown are for the DW, JT, NT, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.
3. The package thermal impedance is calculated in accordance with JESD 51-3.

SN54HC646, SN74HC646
OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS

SCLS150C – DECEMBER 1982 – REVISED MARCH 2003

recommended operating conditions (see Note 4)

			SN54HC646			SN74HC646			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage		2	5	6	2	5	6	V
V _{IH}	High-level input voltage	V _{CC} = 2 V		1.5		1.5			V
		V _{CC} = 4.5 V		3.15		3.15			
		V _{CC} = 6 V		4.2		4.2			
V _{IL}	Low-level input voltage	V _{CC} = 2 V			0.5			0.5	V
		V _{CC} = 4.5 V			1.35			1.35	
		V _{CC} = 6 V			1.8			1.8	
V _I	Input voltage		0	V _{CC}		0	V _{CC}		V
V _O	Output voltage		0	V _{CC}		0	V _{CC}		V
t _t	Input transition (rise and fall) time	V _{CC} = 2 V			1000			1000	ns
		V _{CC} = 4.5 V			500			500	
		V _{CC} = 6 V			400			400	
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	T _A = 25°C			SN54HC646		SN74HC646		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
V _{OH}	V _I = V _{IH} or V _{IL}	I _{OH} = -20 μA	2 V	1.9	1.998	1.9		1.9		V
			4.5 V	4.4	4.499	4.4		4.4		
			6 V	5.9	5.999	5.9		5.9		
		I _{OH} = -6 mA	4.5 V	3.98	4.3	3.7		3.84		
		I _{OH} = -7.8 mA	6 V	5.48	5.8	5.2		5.34		
V _{OL}	V _I = V _{IH} or V _{IL}	I _{OL} = 20 μA	2 V	0.002	0.1	0.1		0.1		V
			4.5 V	0.001	0.1	0.1		0.1		
			6 V	0.001	0.1	0.1		0.1		
		I _{OL} = 6 mA	4.5 V	0.17	0.26	0.4		0.33		
		I _{OL} = 7.8 mA	6 V	0.15	0.26	0.4		0.33		
I _I	Control inputs	V _I = V _{CC} or 0	6 V	±0.1	±100	±1000		±1000		nA
I _{OZ}	A or B	V _O = V _{CC} or 0	6 V	±0.01	±0.5	±10		±5		μA
I _{CC}		V _I = V _{CC} or 0, I _O = 0	6 V		8	160		80		μA
C _i	Control inputs		2 V to 6 V	3	10	10		10		pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

**SN54HC646, SN74HC646
OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS**

SCLS150C – DECEMBER 1982 – REVISED MARCH 2003

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

		V _{CC}	T _A = 25°C		SN54HC646		SN74HC646		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency	2 V	6		4.3		5.5		MHz
		4.5 V		31		22		27	
		6 V		36		25		31	
t _W	Pulse duration, CLKBA or CLKAB high or low	2 V	80		115		95		ns
		4.5 V		16		23		19	
		6 V		14		20		16	
t _{su}	Setup time, A before CLKAB↑ or B before CLKBA↑	2 V	100		150		125		ns
		4.5 V		20		30		25	
		6 V		17		26		21	
t _h	Hold time, A after CLKAB↑ or B after CLKBA↑	2 V	5		5		5		ns
		4.5 V		5		5		5	
		6 V		5		5		5	

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN54HC646, SN74HC646
OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS

SCLS150C – DECEMBER 1982 – REVISED MARCH 2003

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V_{CC}	$T_A = 25^\circ\text{C}$			SN54HC646		SN74HC646		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f_{max}			2 V	6	11		4.4		5.5		MHz
			4.5 V	31	54		22		27		
			6 V	36	64		25		31		
t_{pd}	CLKBA or CLKAB	A or B	2 V	65	180		270		225		ns
			4.5 V	18	36		54		45		
			6 V	14	31		46		38		
	A or B	B or A	2 V	50	135		205		170		
			4.5 V	14	27		41		34		
			6 V	11	23		35		29		
	SBA or SAB [†]	A or B	2 V	70	190		285		240		
			4.5 V	20	38		57		48		
			6 V	16	32		48		41		
t_{en}	\overline{OE}	A or B	2 V	85	245		370		305		ns
			4.5 V	25	49		74		61		
			6 V	20	42		63		52		
t_{dis}	\overline{OE}	A or B	2 V	85	245		370		305		ns
			4.5 V	25	49		74		61		
			6 V	20	42		63		52		
t_{en}	DIR	A or B	2 V	80	245		370		305		ns
			4.5 V	25	49		74		61		
			6 V	20	42		63		52		
t_{dis}	DIR	A or B	2 V	80	245		370		305		ns
			4.5 V	25	49		74		61		
			6 V	20	42		63		52		
t_t		Any	2 V	28	60		90		75		ns
			4.5 V	8	12		18		15		
			6 V	6	10		15		13		

[†]These parameters are measured with the internal output state of the storage register opposite that of the bus input.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

**SN54HC646, SN74HC646
OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS**

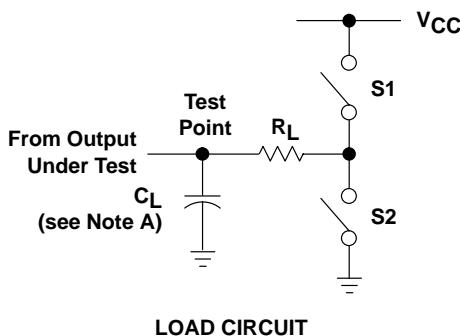
SCLS150C – DECEMBER 1982 – REVISED MARCH 2003

switching characteristics over recommended operating free-air temperature range, $C_L = 150 \text{ pF}$ (unless otherwise noted) (see Figure 2)

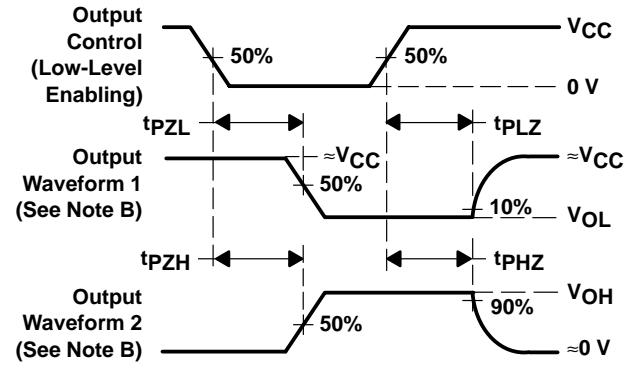
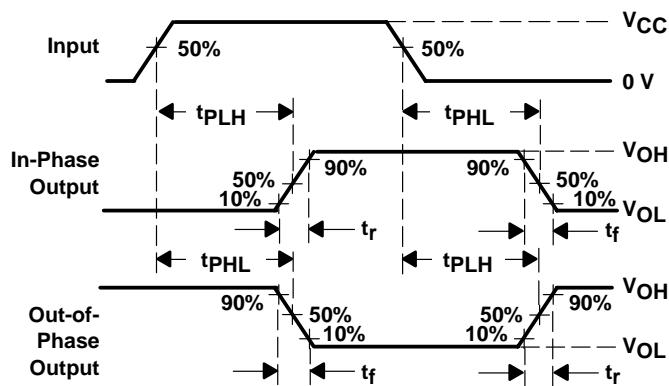
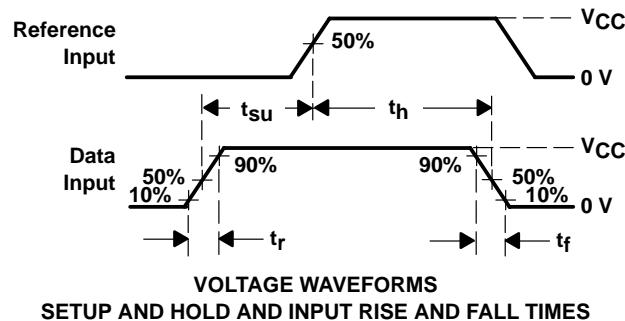
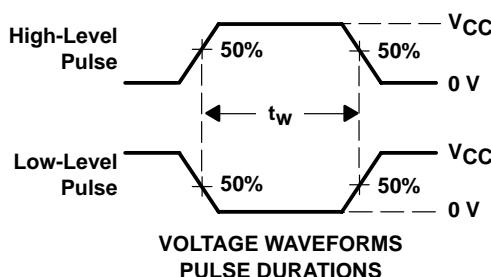
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V_{CC}	$T_A = 25^\circ\text{C}$			SN54HC646	SN74HC646	UNIT
				MIN	TYP	MAX	MIN	MAX	
t_{pd}	CLKBA or CLKAB	A or B	2 V	90	265	400	330		ns
			4.5 V	24	53	80	66		
			6 V	20	46	68	57		
	A or B	B or A	2 V	70	220	335	280		
			4.5 V	20	44	67	56		
			6 V	15	38	57	49		
	SBA or SAB [†]	A or B	2 V	80	275	415	345		
			4.5 V	24	55	83	69		
			6 V	20	47	70	60		
t_{en}	\overline{OE}	A or B	2 V	113	330	500	410		ns
			4.5 V	33	66	100	82		
			6 V	27	57	85	71		
	DIR	A or B	2 V	113	330	500	410		
			4.5 V	33	66	100	82		
			6 V	27	57	85	71		
	t_t	Any	2 V	45	210	315	265		
			4.5 V	17	42	63	53		
			6 V	13	36	53	43		

[†] These parameters are measured with the internal output state of the storage register opposite that of the bus input.

operating characteristics, $T_A = 25^\circ\text{C}$


PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd} Power dissipation capacitance	No load	50	pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

PARAMETER	R_L	C_L	S1	S2
t_{en}	1 k Ω	50 pF or 150 pF	Open	Closed
			Closed	Open
t_{dis}	1 k Ω	50 pF	Open	Closed
			Closed	Open
t_{pd} or t_t	—	50 pF or 150 pF	Open	Open

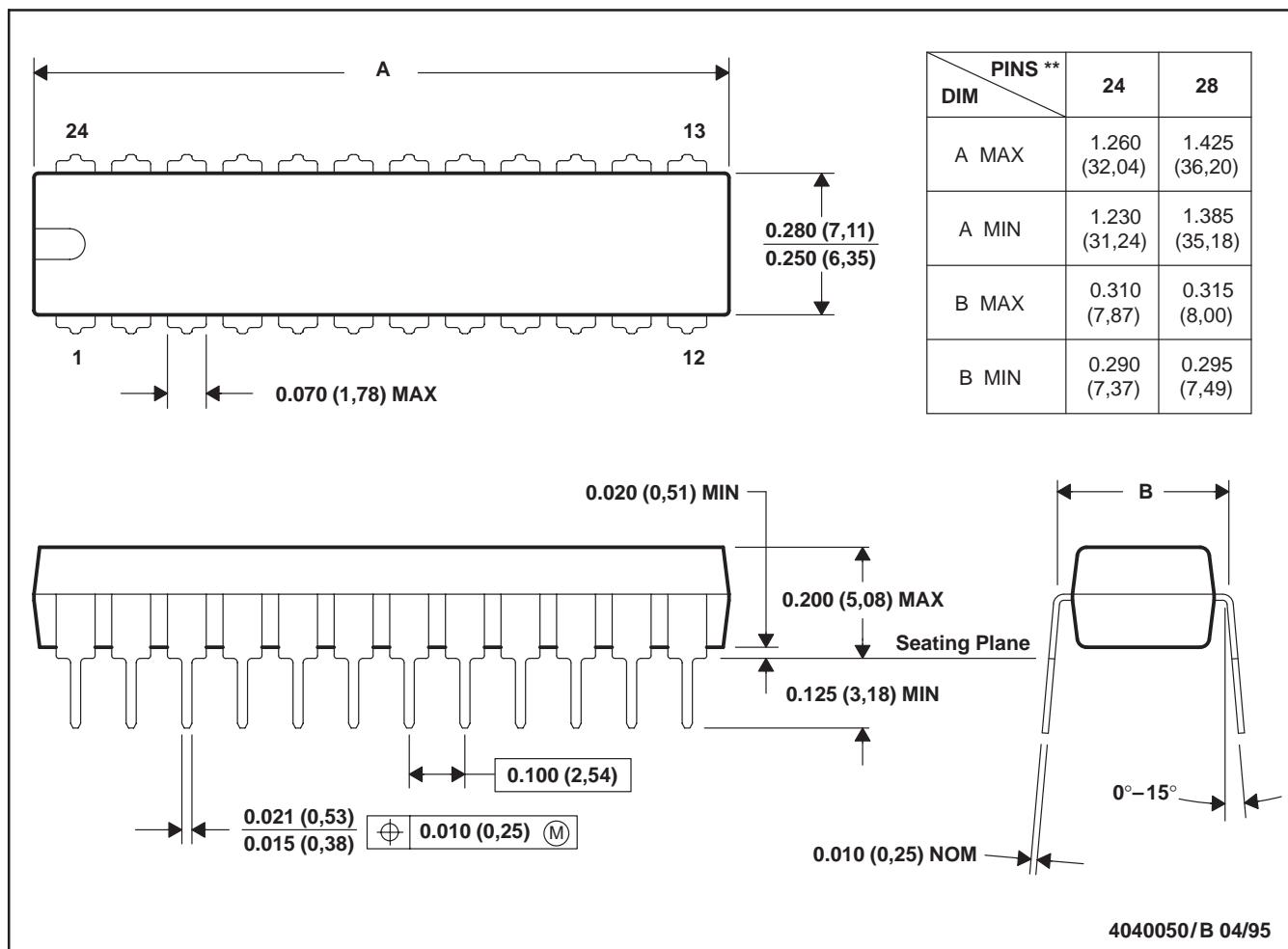
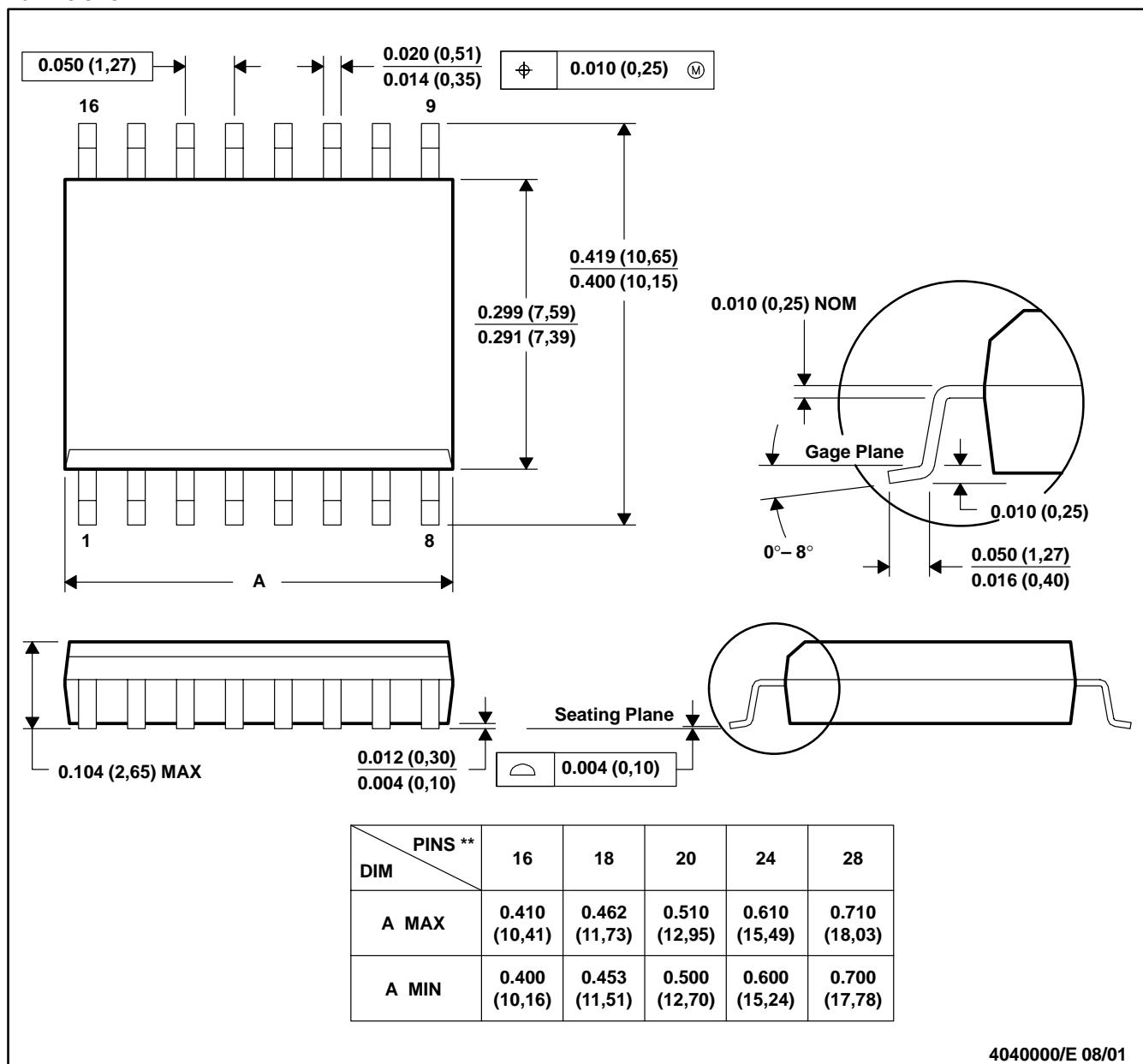

NOTES: A. C_L includes probe and test-fixture capacitance.
 B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r = 6$ ns, $t_f = 6$ ns.
 D. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
 E. The outputs are measured one at a time with one input transition per measurement.
 F. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 G. t_{PZL} and t_{PZH} are the same as t_{en} .
 H. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

NT (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PINS SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

DW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

16 PINS SHOWN

4040000/E 08/01

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
 D. Falls within JEDEC MS-013

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265