

8-Bit Addressable, DMOS Power Driver

Discontinued Product

These parts are no longer in production The device should not be purchased for new design applications. Samples are no longer available.

Date of status change: October 29, 2007

Recommended Substitutions:

NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

6B259

8-BIT ADDRESSABLE DMOS POWER DRIVER

The A6B259KA and A6B259KLW combine a 3-to-8 line CMOS decoder and accompanying data latches, control circuitry, and DMOS outputs in a multi-functional power driver capable of storing single-line data in the addressable latches or use as a decoder or demuliplexer. Driver applications include relays, solenoids, and other medium-current or high-voltage peripheral power loads.

The CMOS inputs and latches allow direct interfacing with micro-processor-based systems. Use with TTL may require appropriate pull-up resistors to ensure an input logic high. Four modes of operation are selectable with the CLEAR and ENABLE inputs.

The A6B259KA/KLW DMOS open-drain outputs are capable of sinking up to 500 mA. Similar devices with reduced $r_{DS(on)}$ are available as the A6259KA/KLW.

The A6B259KA is furnished in a 20-pin dual in-line plastic package. The A6B259KLW is furnished in a 20-lead wide-body, small-outline plastic package (SOIC) with gull-wing leads for surface-mount applications. Copper lead frames, reduced supply current requirements, and low on-state resistance allow either device to sink 150 mA from all outputs continuously, to ambient temperatures greater than 85°C.

ABSOLUTE MAXIMUM RATINGS at $T_A = 25^{\circ}C$

Note that the A6B259KA (DIP) and the A6B259KLW

(SOIC) are electrically identical and share a common

DECODER LOGIC

LATCHES

20 NO (INTERNAL) CONNECTION

19 CLEAR

18 DATA

17 OUT₇

16 OUT₆

15 OUT

14 OUT 4

13 ENABLE

S₂ (MSB)

GROUND

at 1 _A - 25 C
Output Voltage, V _O 50 V
Output Drain Current,
Continuous, I _O 150 mA*
Peak, I _{OM} 500 mA†
Single-Pulse Avalanche Energy,
E _{AS} 30 mJ
Logic Supply Voltage, V _{DD} 7.0 V
Input Voltage Range,
V_{I} 0.3 V to +7.0 V
Package Power Dissipation,
P _D See Graph
Operating Temperature Range,
T_A 40°C to +125°C
Storage Temperature Range,
T_S 55°C to +150°C

* Each output, all outputs on.

NO (INTERNAL) CONNECTION

LOGIC SUPPLY

S₀ (LSB) 3

OUT

LOGIC

GROUND

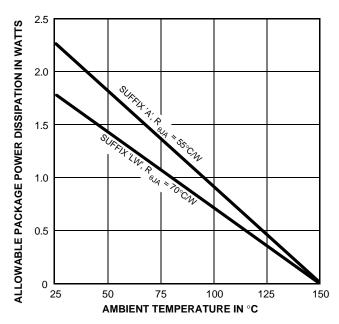
POWER

terminal number assignment.

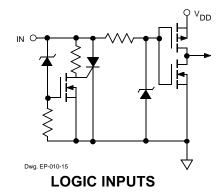
2

† Pulse duration $\leq 100~\mu s$, duty cycle $\leq 2\%$.

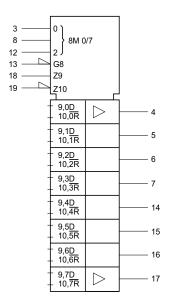
Caution: These CMOS devices have input static protection (Class 3) but are still susceptible to damage if exposed to extremely high static electrical charges.

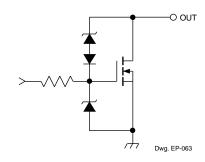

FEATURES

- 50 V Minimum Output Clamp Voltage
- 150 mA Output Current (all outputs simultaneously)
- 5 Ω Typical $r_{DS(on)}$
- Low Power Consumption
- Replacements for TPIC6B259N and TPIC6B259DW


Always order by complete part number:

Part Number	Package	$R_{\theta JA}$	$R_{ heta JC}$
A6B259KA	20-pin DIP	55°C/W	25°C/W
A6B259KLW	20-lead SOIC	70°C/W	17°C/W




Dwg. GS-004A

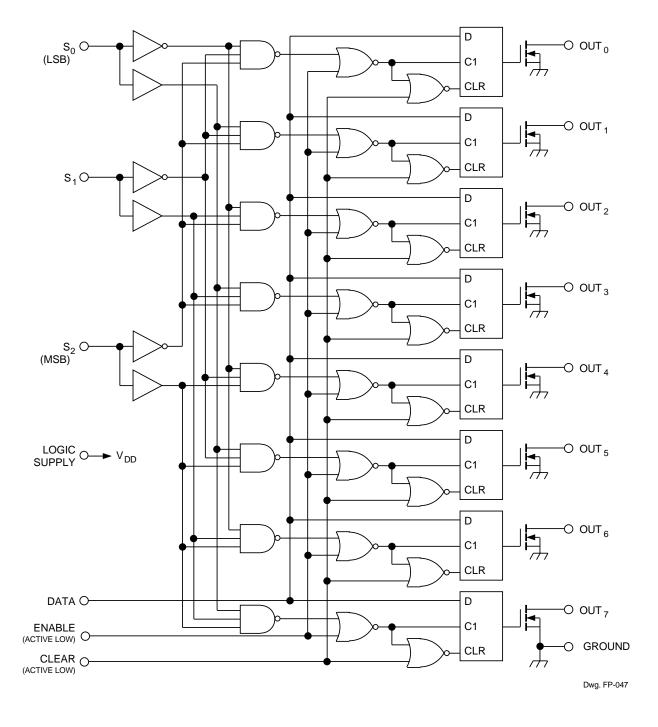
LOGIC SYMBOL

Dwg. FP-046

DMOS POWER DRIVER OUTPUT

FUNCTION TABLE

CLEAR	Inputs ENABLE	DATA	Addressed OUTPUT	Other OUTPUTs	Function
Н	L	Н	L	R	Addressable
Н	L	L	Н	R	Latch
Н	Н	Х	R	R	Memory
L	L	Н	L	Н	8-Line
L	L	L	Н	Н	Demultiplexer
L	Н	Χ	Н	Н	Clear


L = Low Logic Level H = High Logic Level X = Irrelevant R = Previous State

LATCH SELECTION TABLE

Sele	Addressed		
S ₂ (MSB)	S_1	S ₀ (LSB)	OUTPUT
L	L	L	0
L	L	Н	1
L	Н	L	2
L	Н	Н	3
Н	L	L	4
Н	L	Н	5
Н	Н	L	6
Н	Н	Н	7

FUNCTIONAL BLOCK DIAGRAM

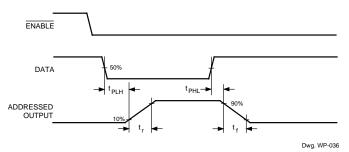
Grounds (terminals 9, 10, and 11) must be connected externally to a single point.

RECOMMENDED OPERATING CONDITIONS

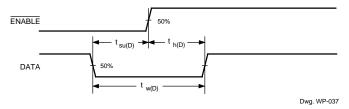
over operating temperature range

Logic Supply Voltage Range, V _{DD}	4.5 V to 5.5 V
High-Level Input Voltage, V _{IH}	$\geq 0.85 V_{DD}$
Low-level input voltage, V _{II}	≤0.15V _{DD}

ELECTRICAL CHARACTERISTICS at T_A = +25°C, V_{DD} = 5 V, t_{ir} = $t_{if} \le$ 10 ns (unless otherwise specified).


			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Logic Supply Voltage	V_{DD}	Operating	4.5	5.0	5.5	V
Output Breakdown Voltage	$V_{(BR)DSX}$	I _O = 1 mA	50	_	_	V
Off-State Output	I _{DSX}	V _O = 40 V, V _{DD} = 5.5 V	_	0.1	5.0	μΑ
Current		V _O = 40 V, V _{DD} = 5.5 V, T _A = 125°C	_	0.15	8.0	μΑ
Static Drain-Source	r _{DS(on)}	I _O = 100 mA, V _{DD} = 4.5 V	_	4.2	5.7	Ω
On-State Resistance		I _O = 100 mA, V _{DD} = 4.5 V, T _A = 125°C	_	6.8	9.5	Ω
		I _O = 350 mA, V _{DD} = 4.5 V (see note)	_	5.5	8.0	Ω
Nominal Output Current	I _{ON}	V _{DS(on)} = 0.5 V, T _A = 85°C	_	90	_	mA
Logic Input Current	I _{IH}	V _I = V _{DD} = 5.5 V	_	_	1.0	μΑ
	I _{IL}	V _I = 0, V _{DD} = 5.5 V	_	_	-1.0	μΑ
Prop. Delay Time	t _{PLH}	I _O = 100 mA, C _L = 30 pF	_	150	_	ns
	t _{PHL}	I _O = 100 mA, C _L = 30 pF	_	90	_	ns
Output Rise Time	t _r	I _O = 100 mA, C _L = 30 pF	_	200	_	ns
Output Fall Time	t _f	I _O = 100 mA, C _L = 30 pF	_	200	_	ns
Supply Current	I _{DD(OFF)}	V _{DD} = 5.5 V, Outputs off	_	20	100	μΑ
	I _{DD(ON)}	V _{DD} = 5.5 V, Outputs on		150	300	μΑ

Typical Data is at $V_{DD} = 5 \text{ V}$ and is for design information only.


NOTE — Pulse test, duration \leq 100 μ s, duty cycle \leq 2%.

FUNCTIONAL DESCRIPTION and INPUT REQUIREMENTS

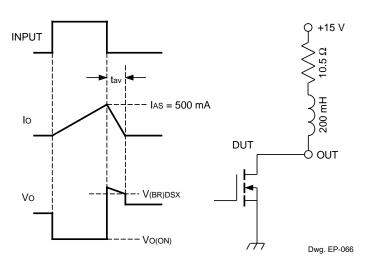
OUTPUT SWITCHING TIME

DATA INPUT REQUIREMENTS

20 ns
20 ns
40 ns
$5V_{CC}$
$5V_{CC}$

Four modes of operation are selectable by controlling the CLEAR and ENABLE inputs as shown above.

In the addressable-latch mode, data at the DATA input is written into the addressed transparent latch. The addressed output inverts the data input with all other outputs remaining in their previous states.


In the memory mode, all outputs remain in their previous states and are unaffected by the DATA or address (S_n) inputs. To prevent entering erroneus data in the latches, ENABLE should be held HIGH while the address lines are changing.

In the demultiplexing/decoding mode, the addressed output inverts the data input and all other outputs are OFF.

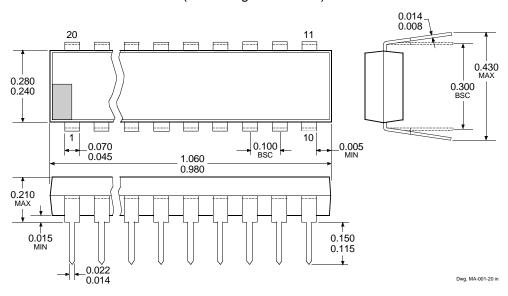
In the clear mode, all outputs are OFF and are unaffected by the DATA or address (S_N) inputs.

Given the appropriate inputs, when DATA is LOW for a given address, the output is OFF; when DATA is HIGH, the output is ON and can sink current.

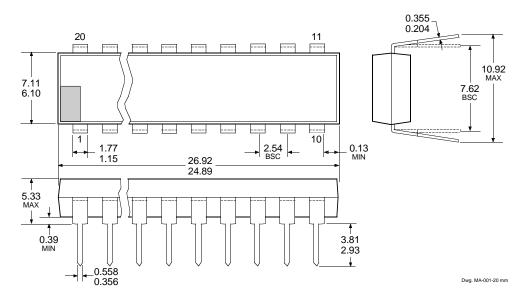
TEST CIRCUITS

 $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{AV}/2$

Single-Pulse Avalanche Energy Test Circuit and Waveforms


TERMINAL DESCRIPTIONS

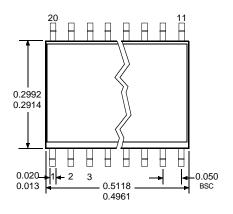
Terminal No.	Terminal Name	Function
1	NC	No (internal) connection.
2	LOGIC SUPPLY	(V _{DD}) The logic supply voltage (typically 5 V).
3	S_0	Binary-coded output-select input, least-significant bit.
4	OUT_0	Current-sinking, open-drain DMOS output, address 000.
5	OUT_1	Current-sinking, open-drain DMOS output, address 001.
6	OUT_2	Current-sinking, open-drain DMOS output, address 010.
7	OUT_3	Current-sinking, open-drain DMOS output, address 011.
8	S_1	Binary-coded output-select input.
9	LOGIC GROUND	Reference terminal for logic voltage measurements.
10	POWER GROUND	Reference terminal for output voltage measurements (OUT ₀₋₃).
11	POWER GROUND	Reference terminal for output voltage measurements (OUT ₄₋₇).
12	S_2	Binary-coded output-select input, most-significant bit.
13	ENABLE	Mode control input; see Function Table.
14	OUT_4	Current-sinking, open-drain DMOS output, address 100.
15	OUT_5	Current-sinking, open-drain DMOS output, address 101.
16	OUT_6	Current-sinking, open-drain DMOS output, address 110.
17	OUT ₇	Current-sinking, open-drain DMOS output, address 111.
18	DATA	CMOS data input to the addressed output latch. When enabled, the addressed output inverts the data input (DATA = HIGH, OUTPUT = LOW).
19	CLEAR	Mode control input; see Function Table.
20	NC	No (internal) connection.

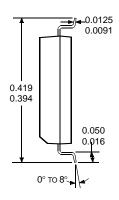

NOTE — Grounds (terminals 9, 10, and 11) must be connected externally to a single point.

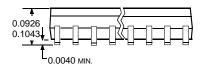
A6B259KA

Dimensions in Inches (controlling dimensions)

Dimensions in Millimeters (for reference only)

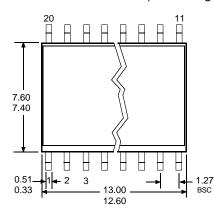


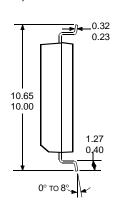

- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.
 - 3. Lead thickness is measured at seating plane or below.

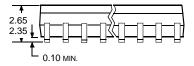


A6B259KLW

Dimensions in Inches (for reference only)







Dwg. MA-008-20 in

Dimensions in Millimeters (controlling dimensions)

Dwg. MA-008-20 mm

- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

