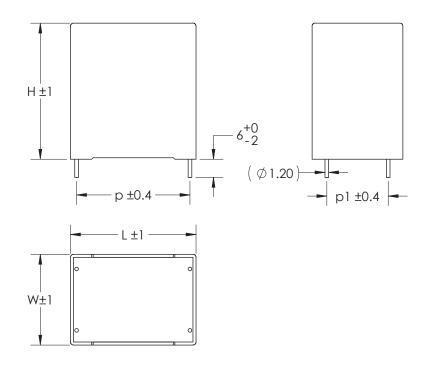
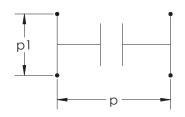
PCB Mount Power Film Capacitors

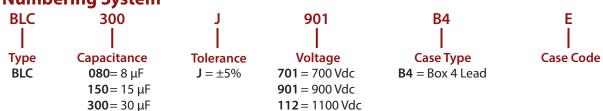
Type BLC series uses the most advanced metallized film technology for long life and high reliability in DC Link applications. This series combines high capacitance and very high ripple current capability needed for today's inverter designs for medium power wind, solar, fuel cells, UPS systems and more.


Highlights

- High capacitance
- High ripple current
- Self-healing


Specifications	
Capacitance Range	8 to 55 μF
Capacitance Tolerance	±5% standard
Rated Voltage	700 to 1100 Vdc
Operating Temperature Range	-45 °C to 85 °C (ambient)
Maximum rms Current	see data tables
Maximum rms Voltage	230 Vac
Test Voltage between Terminals @ 25 °C	150% rated DC voltage for 10 s
Test Voltage between Terminals and Case @ 25°C	2 kVac @ 50/60 Hz for 10 s
Life Test	5000 h @ 85 °C, rated voltage
Reference Standards	IEC 61071
Rol	HS Compliant

Dimensions


Specifications

Construction Details						
Case Material	Plastic UL94V-0					
Resin Material	Dry Resin UL94V-0					
Terminal Material	Tin Plated Copper					

PCB Mount Power Film Capacitors Part Numbering System

Case Code	W	Н	L	р	р1	d
Α	20	40	41.5	37.5	10.2	1.2
В	28	37	41.5	37.5	10.2	1.2
С	24	44	41.5	37.5	10.2	1.2
D	30	45	41.5	37.5	20.3	1.2
E	30	45	57.5	52.5	20.3	1.2
F	35	50	57.5	52.5	20.3	1.2

Ratings

		Тур	·	Current			Peak	The	rmal			
	Cap	10 kHz	T _A =25 °C	T _A =55 °C	T _A =75 °C		Current	Resis	tance	Case	Typical	Case
	c	ESR	Irms	Irms	Irms	dV/dt	l _{pk}	Осс	Θса	Area	Weight	Code
PartNumber	(μ F)	$(m\Omega)$	(A)	(A)	(A)	(V/μs)	(A)	(°C/W)	(°C/W)	(mm²)	(g)	
					7	00 Vdc						
BLC150J701B4A	15	5.2	21	15	8	13.5	200	10.0	15.8	6580	30.5	Α
BLC200J701B4B	20	3.9	25	17	10	13.0	260	11.4	14.0	7467	36.8	В
BLC220J701B4C	22	3.6	27	19	11	11.8	290	10.0	13.4	7756	37.8	C
BLC300J701B4D	30	2.6	33	23	13	13.0	390	10.0	11.7	8925	46.7	D
BLC450J701B4E	45	3.6	31	22	13	8.5	390	8.0	9.3	11325	59.5	Е
BLC550J701B4F	55	2.9	36	25	14	8.9	490	8.0	8.0	13275	69.6	F
					9	00 Vdc						
BLC120J901B4A	12	5.2	21	15	8	15.8	190	10.0	15.8	6580	34.8	Α
BLC140J901B4B	14	4.5	23	16	9	16.4	230	11.4	14.0	7467	39.3	В
BLC160J901B4C	16	3.9	26	18	10	15.6	250	10.0	13.4	7756	41.5	C
BLC200J901B4D	20	3.1	30	21	12	16.0	320	10.0	11.7	8925	48.8	D
BLC300J901B4E	30	4.3	29	20	11	10.8	325	8.0	9.3	11325	62.4	Е
BLC400J901B4F	40	3.2	35	25	14	10.7	430	8.0	8.0	13275	78.6	F
					11	00 Vdc						
BLC080J112B4A	8	6.5	19	13	7	20.0	160	10.0	15.8	6580	34.3	Α
BLC100J112B4B	10	5.2	22	15	9	20.0	200	11.4	14.0	7467	40.4	В
BLC120J112B4D	12	4.3	25	18	10	19.2	230	10.0	11.7	8925	44.5	D
BLC200J112B4E	20	5.3	26	18	10	13.0	260	8.0	9.3	11325	61.1	Е
BLC250J112B4F	25	4.2	30	21	12	13.2	330	8.0	8.0	13275	72.9	F

PCB Mount Power Film Capacitors

Expected Lifetime Predictions

Capacitance: C (μF)

Equivalent Series Resistance: ESR ($m\Omega$)

Frequency: f(kHz)

Ripple Current: I (A_{rms})

Ambient Temperature: T_A (°C)

Core Temperature: T_C (°C)

Total Thermal Resistance: Θ (°C/W)

Thermal Resistance case-to-ambient: Θ_{CA} (°C/W)

Thermal Resistance core-to-case: Θ_{CC} (°C/W)

Airflow Speed: v (m/s)

Applied Voltage: $V_A(V_{DC})$

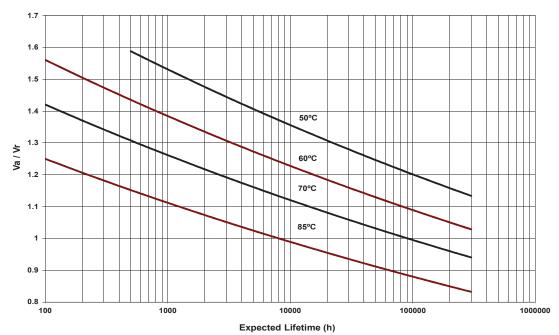
Rated Voltage: $V_R(V_{DC})$

Determine ESR at Operating Frequency

Use the 10 kHz ESR from the ratings tables.

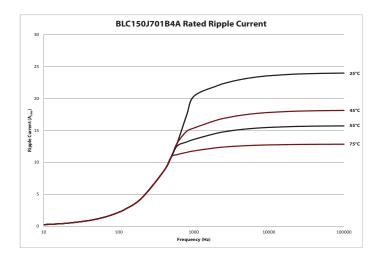
For operation below 10 kHz, the ESR will need to be adjusted using the following equation: ESR - 31.83/(10C) + 31.83/(fC).

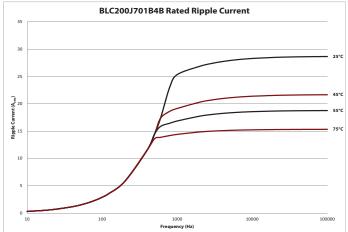
Determine Thermal Resistance at Operating Frequency and Air Flow

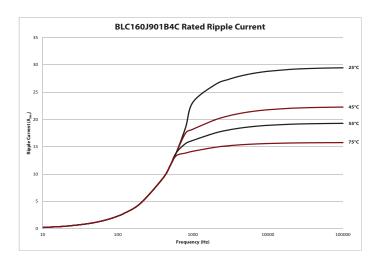

Compute $\Theta = \Theta_{CC} + \Theta_{CA}$. In the ratings tables, Θ_{CA} is for still air. For v = 0 to 5 m/s, multiply Θ_{CA} by $[(5 + 17.6(0.1^{0.66})) / (5 + 17.6(v + 0.1)^{0.66})]$

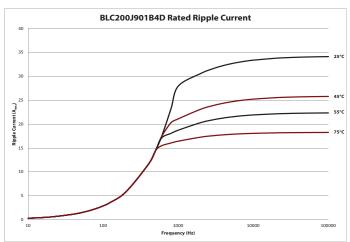
Determine Expected Lifetime

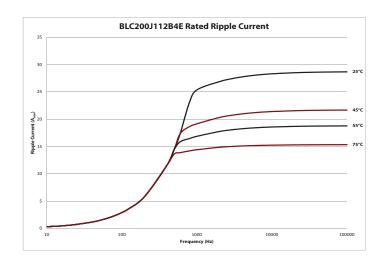
Look up Expected Lifetime on the graph using V_A/V_B and $T_C = T_A + I^2$ (ESR/1000) Θ

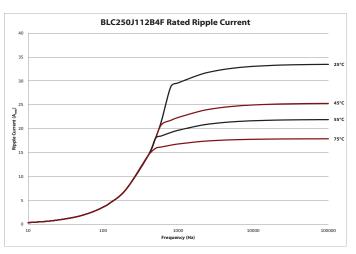

The maximum allowed temperature rise is 40 $^{\circ}$ C and the maximum allowed core temperature is 95 $^{\circ}$ C.


Expected Lifetime vs Core Temperature and Applied DC Voltage




PCB Mount Power Film Capacitors


Typical Performance Curves



Notice and Disclaimer: All product drawings, descriptions, specifications, statements, information and data (collectively, the "Information") in this datasheet or other publication are subject to change. The customer is responsible for checking, confirming and verifying the extent to which the Information contained in this datasheet or other publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without any guarantee, warranty, representation or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on the knowledge that the Cornell Dubilier company providing such statements ("Cornell Dubilier") has of operating conditions that such Cornell Dubilier company regards as typical for such applications, but are not intended to constitute any guarantee, warranty or representation regarding any such matter – and Cornell Dubilier specifically and expressly disclaims any guarantee, warranty or representation concerning the suitability for a specific customer application, use, storage, transportation, or operating environment. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by Cornell Dubilier with reference to the use of any Cornell Dubilier products is given gratis (unless otherwise specified by Cornell Dubilier), and Cornell Dubilier assumes no obligation or liability for the advice given or results obtained. Although Cornell Dubilier strives to apply the most stringent quality and safety standards regarding the design and manufacturing of its products, in light of the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies or other appropriate protective measures) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage. Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated in such warnings, cautions and notes, or that other safety measures may not be required.