

SSTUB32866

1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-800 RDIMM applications

Rev. 04 — 15 April 2010

Product data sheet

1. General description

The SSTUB32866 is a 1.8 V configurable register specifically designed for use on DDR2 memory modules requiring a parity checking function. The register is configurable (using configuration pins C0 and C1) to two topologies: 25-bit 1 : 1 or 14-bit 1 : 2, and in the latter configuration can be designated as Register A or Register B on the DIMM.

The SSTUB32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

The SSTUB32866 is packaged in a 96-ball, 6 × 16 grid, 0.8 mm ball pitch LFBGA package (13.5 mm × 5.5 mm).

2. Features and benefits

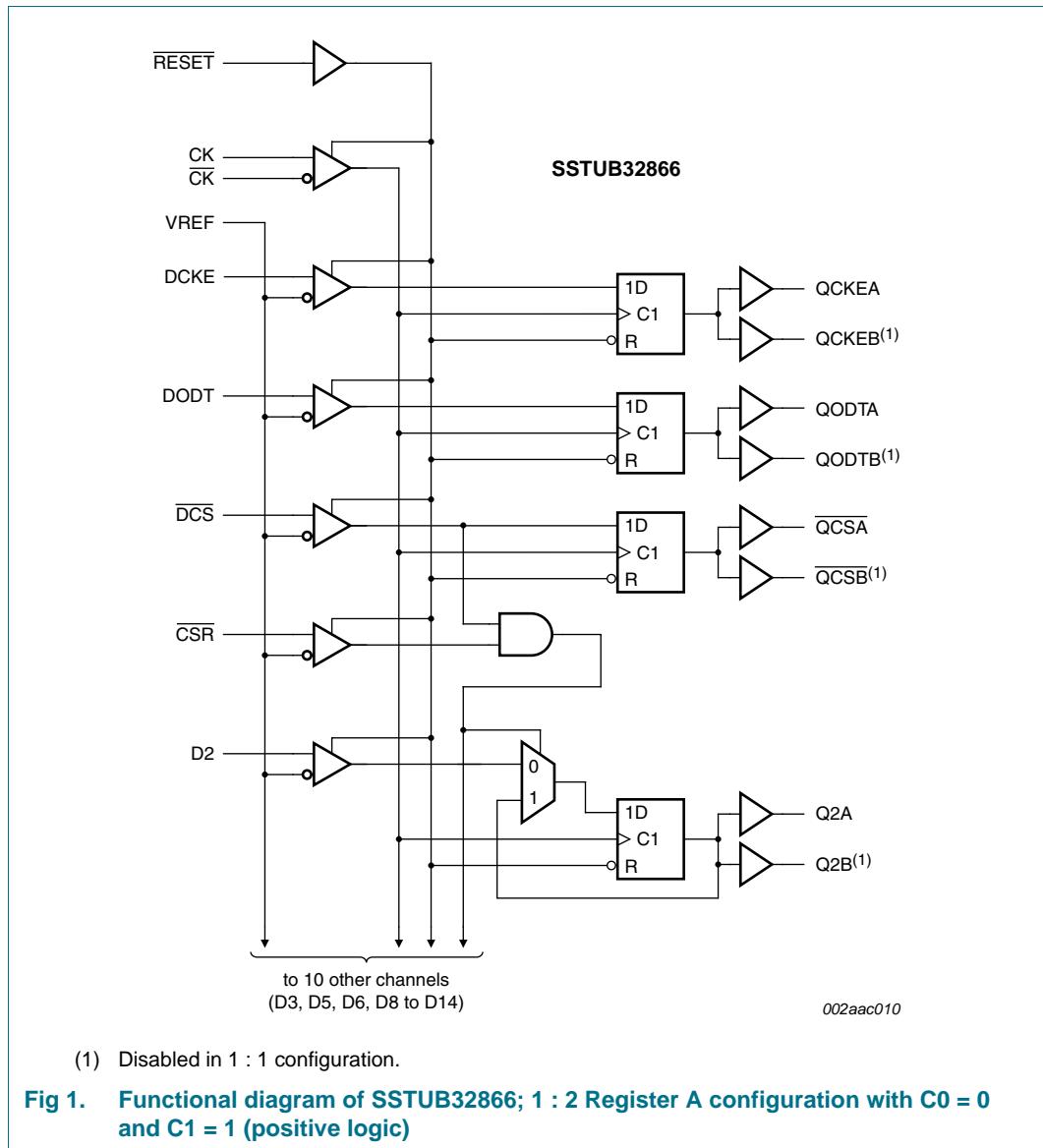
- Configurable register supporting DDR2 up to 800 MT/s Registered DIMM applications
- Configurable to 25-bit 1 : 1 mode or 14-bit 1 : 2 mode
- Controlled output impedance drivers enable optimal signal integrity and speed
- Meets or exceeds SSTUB32866 JEDEC standard speed performance
- Supports up to 450 MHz clock frequency of operation
- Optimized pinout for high-density DDR2 module design
- Chip-selects minimize power consumption by gating data outputs from changing state
- Supports SSTL_18 data inputs
- Checks parity on the DIMM-independent data inputs
- Partial parity output and input allows cascading of two SSTUB32866s for correct parity error processing
- Differential clock (CK and \overline{CK}) inputs
- Supports LVCMOS switching levels on the control and \overline{RESET} inputs
- Single 1.8 V supply operation (1.7 V to 2.0 V)
- Available in 96-ball, 13.5 mm × 5.5 mm, 0.8 mm ball pitch LFBGA package

3. Applications

- 400 MT/s to 800 MT/s DDR2 registered DIMMs desiring parity checking functionality

4. Ordering information

Table 1. Ordering information


Type number	Solder process	Package			Version
		Name	Description		
SSTUB32866EC/G	Pb-free (SnAgCu solder ball compound)	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 × 5.5 × 1.05 mm		SOT536-1
SSTUB32866EC/S	Pb-free (SnAgCu solder ball compound)	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 × 5.5 × 1.05 mm		SOT536-1

4.1 Ordering options

Table 2. Ordering options

Type number	Temperature range
SSTUB32866EC/G	$T_{amb} = 0 \text{ }^{\circ}\text{C}$ to $+70 \text{ }^{\circ}\text{C}$
SSTUB32866EC/S	$T_{amb} = 0 \text{ }^{\circ}\text{C}$ to $+85 \text{ }^{\circ}\text{C}$

5. Functional diagram

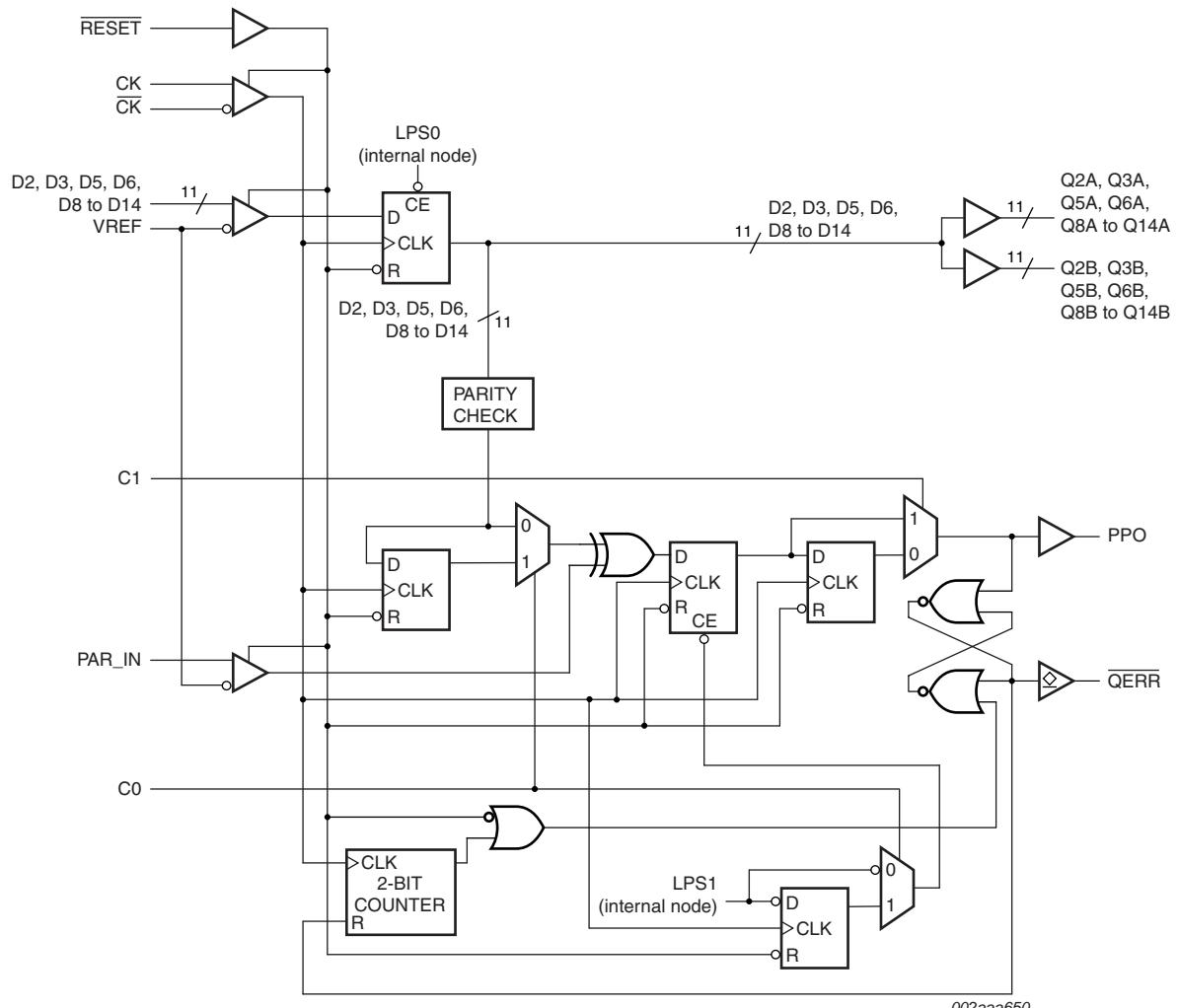


Fig 2. Parity logic diagram for 1 : 2 Register A configuration (positive logic); C0 = 0, C1 = 1

6. Pinning information

6.1 Pinning

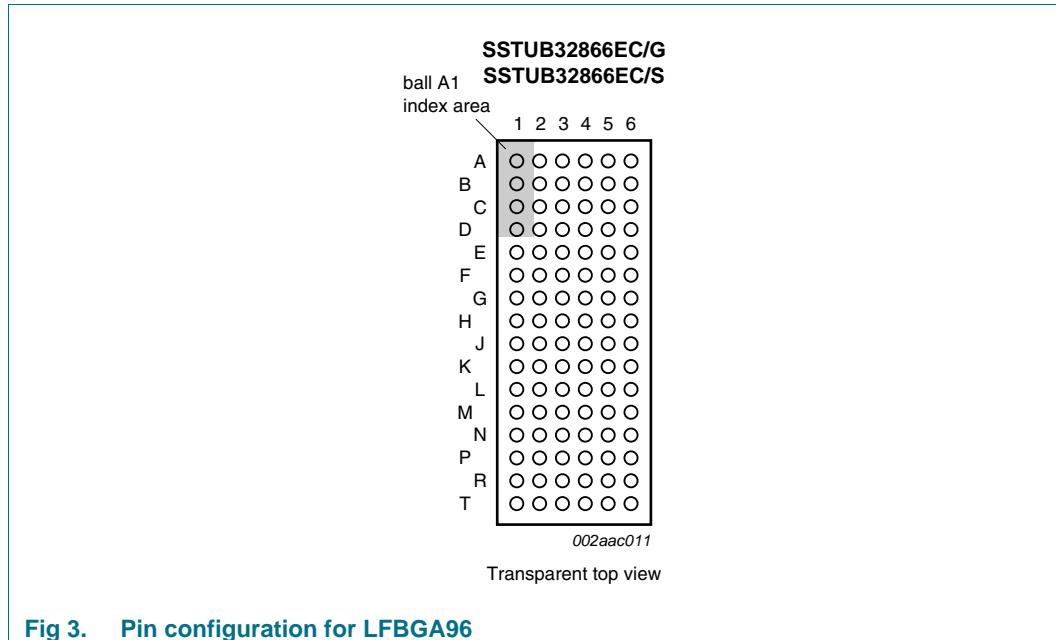


Fig 3. Pin configuration for LFBGA96

	1	2	3	4	5	6
A	DCKE	PPO	VREF	V _{DD}	QCKE	DNU
B	D2	D15	GND	GND	Q2	Q15
C	D3	D16	V _{DD}	V _{DD}	Q3	Q16
D	DODT	\overline{QERR}	GND	GND	QODT	DNU
E	D5	D17	V _{DD}	V _{DD}	Q5	Q17
F	D6	D18	GND	GND	Q6	Q18
G	PAR_IN	\overline{RESET}	V _{DD}	V _{DD}	C1	C0
H	CK	\overline{DCS}	GND	GND	\overline{QCS}	DNU
J	\overline{CK}	\overline{CSR}	V _{DD}	V _{DD}	n.c.	n.c.
K	D8	D19	GND	GND	Q8	Q19
L	D9	D20	V _{DD}	V _{DD}	Q9	Q20
M	D10	D21	GND	GND	Q10	Q21
N	D11	D22	V _{DD}	V _{DD}	Q11	Q22
P	D12	D23	GND	GND	Q12	Q23
R	D13	D24	V _{DD}	V _{DD}	Q13	Q24
T	D14	D25	VREF	V _{DD}	Q14	Q25

002aab108

Fig 4. Ball mapping, 1 : 1 register (C0 = 0, C1 = 0)

	1	2	3	4	5	6
A	DCKE	PPO	VREF	V _{DD}	QCKEA	QCKEB
B	D2	DNU	GND	GND	Q2A	Q2B
C	D3	DNU	V _{DD}	V _{DD}	Q3A	Q3B
D	DODT	QERR	GND	GND	QODTA	QODTB
E	D5	n.c.	V _{DD}	V _{DD}	Q5A	Q5B
F	D6	n.c.	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	V _{DD}	V _{DD}	C1	C0
H	CK	DCS	GND	GND	QCSA	QCSB
J	CK	CSR	V _{DD}	V _{DD}	n.c.	n.c.
K	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V _{DD}	V _{DD}	Q9A	Q9B
M	D10	DNU	GND	GND	Q10A	Q10B
N	D11	DNU	V _{DD}	V _{DD}	Q11A	Q11B
P	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V _{DD}	V _{DD}	Q13A	Q13B
T	D14	DNU	VREF	V _{DD}	Q14A	Q14B

002aab109

Fig 5. Ball mapping, 1 : 2 Register A (C0 = 0, C1 = 1)

	1	2	3	4	5	6
A	D1	PPO	VREF	V _{DD}	Q1A	Q1B
B	D2	DNU	GND	GND	Q2A	Q2B
C	D3	DNU	V _{DD}	V _{DD}	Q3A	Q3B
D	D4	QERR	GND	GND	Q4A	Q4B
E	D5	DNU	V _{DD}	V _{DD}	Q5A	Q5B
F	D6	DNU	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	V _{DD}	V _{DD}	C1	C0
H	CK	DCS	GND	GND	QCSA	QCSB
J	CK	CSR	V _{DD}	V _{DD}	n.c.	n.c.
K	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V _{DD}	V _{DD}	Q9A	Q9B
M	D10	DNU	GND	GND	Q10A	Q10B
N	DODT	DNU	V _{DD}	V _{DD}	QODTA	QODTB
P	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V _{DD}	V _{DD}	Q13A	Q13B
T	DCKE	DNU	VREF	V _{DD}	QCKEA	QCKEB

002aab110

Fig 6. Ball mapping, 1 : 2 Register B (C0 = 1, C1 = 1)

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Type	Description
GND	B3, B4, D3, D4, F3, F4, H3, H4, K3, K4, M3, M4, P3, P4	ground input	ground
V _{DD}	A4, C3, C4, E3, E4, G3, G4, J3, J4, L3, L4, N3, N4, R3, R4, T4	1.8 V nominal	power supply voltage
VREF	A3, T3	0.9 V nominal	input reference voltage
CK	H1	differential input	positive master clock input
CK	J1	differential input	negative master clock input
C0	G6	LVC MOS inputs	Configuration control inputs; Register A or Register B and 1 : 1 mode or 1 : 2 mode select.
C1	G5		
RESET	G2	LVC MOS input	Asynchronous reset input (active LOW). Resets registers and disables VREF data and clock.
CSR	J2	SSTL_18 input	Chip select inputs (active LOW). Disables D1 to D25 ^[1]
DCS	H2		outputs switching when both inputs are HIGH.
D1 to D25	^[2]	SSTL_18 input	Data input. Clocked in on the crossing of the rising edge of CK and the falling edge of CK.
DODT	^[2]	SSTL_18 input	The outputs of this register bit will not be suspended by the DCS and CSR control.
DCKE	^[2]	SSTL_18 input	The outputs of this register bit will not be suspended by the DCS and CSR control.
PAR_IN	G1	SSTL_18 input	Parity input. Arrives one clock cycle after the corresponding data input.
Q1 to Q25, Q2A to Q14A, Q1B to Q14B	^[2]	1.8 V CMOS outputs	Data outputs that are suspended by the DCS and CSR control. ^[3]
PPO	A2	1.8 V CMOS output	Partial parity out. Indicates odd parity of inputs D1 to D25. ^[1]
QCS, QCSA, QCSB	^[2]	1.8 V CMOS output	Data output that will not be suspended by the DCS and CSR control.
QODT, QODTA, QODTB	^[2]	1.8 V CMOS output	Data output that will not be suspended by the DCS and CSR control.
QCKE, QCKEA, QCKEB	^[2]	1.8 V CMOS output	Data output that will not be suspended by the DCS and CSR control.
QERR	D2	open-drain output	Output error bit (active LOW). Generated one clock cycle after the corresponding data output.
n.c.	^[2]	-	Not connected. Ball present but no internal connection to the die.
DNU	^[2]	-	Do not use. Inputs are in standby-equivalent mode and outputs are driven LOW.

[1] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.

Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.

Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.

[2] Depends on configuration. See [Figure 4](#), [Figure 5](#), and [Figure 6](#) for ball number.

[3] Data outputs = Q2, Q3, Q5, Q6, Q8 to Q25 when C0 = 0 and C1 = 0.
Data outputs = Q2, Q3, Q5, Q6, Q8 to Q14 when C0 = 0 and C1 = 1.
Data outputs = Q1 to Q6, Q8 to Q10, Q12, Q13 when C0 = 1 and C1 = 1.

7. Functional description

The SSTUB32866 is a 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity, designed for 1.7 V to 2.0 V V_{DD} operation.

All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control and reset (RESET) inputs are LVC MOS. All data outputs are 1.8 V CMOS drivers that have been optimized to drive the DDR2 DIMM load, and meet SSTL_18 specifications. The error (QERR) output is 1.8 V open-drain driver.

The SSTUB32866 operates from a differential clock (CK and \overline{CK}). Data are registered at the crossing of CK going HIGH, and \overline{CK} going LOW.

The C0 input controls the pinout configuration for the 1 : 2 pinout from A configuration (when LOW) to B configuration (when HIGH). The C1 input controls the pinout configuration from 25-bit 1 : 1 (when LOW) to 14-bit 1 : 2 (when HIGH).

The SSTUB32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

When used as a single device, the C0 and C1 inputs are tied LOW. In this configuration, parity is checked on the PAR_IN input which arrives one cycle after the input data to which it applies. The Partial-Parity-Out (PPO) and QERR signals are produced three cycles after the corresponding data inputs.

When used in pairs, the C0 input of the first register is tied LOW and the C0 input of the second register is tied HIGH. The C1 input of both registers are tied HIGH. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the first device. The PPO and QERR signals are produced on the second device three clock cycles after the corresponding data inputs. The PPO output of the first register is cascaded to the PAR_IN of the second register. The QERR output of the first register is left floating and the valid error information is latched on the QERR output of the second register.

If an error occurs and the QERR output is driven LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW. The DIMM-dependent signals (DCKE, \overline{DCS} , DODT, and CSR) are not included in the parity check computation.

The device supports low-power standby operation. When RESET is LOW, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when RESET is LOW all registers are reset, and all outputs are forced LOW. The LVC MOS RESET input must always be held at a valid logic HIGH or LOW level.

The device also supports low-power active operation by monitoring both system chip select (DCS and CSR) inputs and will gate the Qn and PPO outputs from changing states when both DCS and CSR inputs are HIGH. If either DCS or CSR input is LOW, the Qn and PPO outputs will function normally. The RESET input has priority over the DCS and CSR control and when driven LOW will force the Qn and PPO outputs LOW, and the QERR output HIGH. If the DCS control functionality is not desired, then the CSR input can be hard-wired to ground, in which case, the set-up time requirement for DCS would be the same as for the other Dn data inputs. To control the low-power mode with DCS only, then the CSR input should be pulled up to V_{DD} through a pull-up resistor.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the LOW state during power-up.

In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CK and CK̄. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the Qn outputs will be driven LOW quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are LOW, and the clock is stable during the time from the LOW to HIGH transition of RESET until the input receivers are fully enabled, the design of the SSTUB32866 must ensure that the outputs will remain LOW, thus ensuring no glitches on the output.

7.1 Function table

Table 4. Function table (each flip-flop)

L = LOW voltage level; H = HIGH voltage level; X = don't care; ↑ = LOW to HIGH transition; ↓ = HIGH to LOW transition.

Inputs						Outputs ^[1]		
<u>RESET</u>	<u>DCS</u>	<u>CSR</u>	<u>CK</u>	<u>CK̄</u>	<u>Dn, DODTn, DCKEn</u>	<u>Qn</u>	<u>QCS</u>	<u>QODT, QCKE</u>
H	L	L	↑	↓	L	L	L	L
H	L	L	↑	↓	H	H	L	H
H	L	L	L or H	L or H	X	Q ₀	Q ₀	Q ₀
H	L	H	↑	↓	L	L	L	L
H	L	H	↑	↓	H	H	L	H
H	L	H	L or H	L or H	X	Q ₀	Q ₀	Q ₀
H	H	L	↑	↓	L	L	H	L
H	H	L	↑	↓	H	H	H	H
H	H	L	L or H	L or H	X	Q ₀	Q ₀	Q ₀
H	H	H	↑	↓	L	Q ₀	H	L
H	H	H	↑	↓	H	Q ₀	H	H
H	H	H	L or H	L or H	X	Q ₀	Q ₀	Q ₀
L	X or floating	X or floating	X or floating	X or floating				

[1] Q₀ is the previous state of the associated output.

Table 5. Parity and standby function table*L = LOW voltage level; H = HIGH voltage level; X = don't care; \uparrow = LOW to HIGH transition; \downarrow = HIGH to LOW transition.*

RESET	DCS	CSR	Inputs				Outputs ^[1]	
			CK	\overline{CK}	Σ of inputs = H (D1 to D25)	PAR_IN ^[2]	PPO ^[3]	QERR ^[4]
H	L	X	\uparrow	\downarrow	even	L	L	H
H	L	X	\uparrow	\downarrow	odd	L	H	L
H	L	X	\uparrow	\downarrow	even	H	H	L
H	L	X	\uparrow	\downarrow	odd	H	L	H
H	H	L	\uparrow	\downarrow	even	L	L	H
H	H	L	\uparrow	\downarrow	odd	L	H	L
H	H	L	\uparrow	\downarrow	even	H	H	L
H	H	L	\uparrow	\downarrow	odd	H	L	H
H	H	H	\uparrow	\downarrow	X	X	PPO ₀	\overline{QERR}_0
H	X	X	L or H	L or H	X	X	PPO ₀	\overline{QERR}_0
L	X or floating	X or floating	X or floating	X or floating	X or floating	X or floating	L	H

[1] PPO₀ is the previous state of output PPO; \overline{QERR}_0 is the previous state of output QERR.

[2] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.

Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.

Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.

[3] PAR_IN arrives one clock cycle (C0 = 0), or two clock cycles (C0 = 1), after the data to which it applies.

[4] This condition assumes \overline{QERR} is HIGH at the crossing of CK going HIGH and \overline{CK} going LOW. If \overline{QERR} is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

8. Limiting values

Table 6. Limiting values*In accordance with the Absolute Maximum Rating System (IEC 60134).*

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		-0.5	+2.5	V
V _I	input voltage	receiver	-0.5 ^[1]	+2.5 ^[2]	V
V _O	output voltage	driver	-0.5 ^[1]	V _{DD} + 0.5 ^[2]	V
I _{IK}	input clamping current	V _I < 0 V or V _I > V _{DD}	-	-50	mA
I _{OK}	output clamping current	V _O < 0 V or V _O > V _{DD}	-	\pm 50	mA
I _O	output current	continuous; 0 V < V _O < V _{DD}	-	\pm 50	mA
I _{CCC}	continuous current through each V _{DD} or GND pin		-	\pm 100	mA
T _{stg}	storage temperature		-65	+150	°C
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM); 1.5 k Ω ; 100 pF Machine Model (MM); 0 Ω ; 200 pF	2 200	- -	kV V

[1] The input and output negative voltage ratings may be exceeded if the input and output clamping current ratings are observed.

[2] This value is limited to 2.5 V maximum.

9. Recommended operating conditions

Table 7. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{DD}	supply voltage		1.7	-	2.0	V
V_{ref}	reference voltage		$0.49 \times V_{DD}$	$0.50 \times V_{DD}$	$0.51 \times V_{DD}$	V
V_T	termination voltage		$V_{ref} - 0.040$	V_{ref}	$V_{ref} + 0.040$	V
V_I	input voltage		0	-	V_{DD}	V
$V_{IH(AC)}$	AC HIGH-level input voltage	data (Dn), \overline{CSR} , and PAR_IN inputs	$V_{ref} + 0.250$	-	-	V
$V_{IL(AC)}$	AC LOW-level input voltage	data (Dn), \overline{CSR} , and PAR_IN inputs	-	-	$V_{ref} - 0.250$	V
$V_{IH(DC)}$	DC HIGH-level input voltage	data (Dn), \overline{CSR} , and PAR_IN inputs	$V_{ref} + 0.125$	-	-	V
$V_{IL(DC)}$	DC LOW-level input voltage	data (Dn), \overline{CSR} , and PAR_IN inputs	-	-	$V_{ref} - 0.125$	V
V_{IH}	HIGH-level input voltage	\overline{RESET} , Cn	[1] $0.65 \times V_{DD}$	-	-	V
V_{IL}	LOW-level input voltage	\overline{RESET} , Cn	[1] -	-	$0.35 \times V_{DD}$	V
V_{ICR}	common mode input voltage range	CK, \overline{CK}	[2] 0.675	-	1.125	V
V_{ID}	differential input voltage	CK, \overline{CK}	[2] 600	-	-	mV
I_{OH}	HIGH-level output current		-	-	-8	mA
I_{OL}	LOW-level output current		-	-	8	mA
T_{amb}	ambient temperature	operating in free air				
		SSTUB32866EC/G	0	-	70	°C
		SSTUB32866EC/S	0	-	85	°C

[1] The \overline{RESET} and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation.

[2] The differential inputs must not be floating, unless \overline{RESET} is LOW.

10. Characteristics

Table 8. Characteristics

At recommended operating conditions (see [Table 7](#)); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{OH}	HIGH-level output voltage	$I_{OH} = -6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	1.2	-	-	V
V_{OL}	LOW-level output voltage	$I_{OL} = 6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	-	-	0.5	V
I_I	input current	all inputs; $V_I = V_{DD}$ or GND; $V_{DD} = 2.0 \text{ V}$	-	-	± 5	μA
I_{DD}	supply current	static Standby mode; $\overline{\text{RESET}} = \text{GND}$; $I_O = 0 \text{ mA}; V_{DD} = 2.0 \text{ V}$	-	-	2	mA
		static Operating mode; $\overline{\text{RESET}} = V_{DD}$; $I_O = 0 \text{ mA}; V_{DD} = 2.0 \text{ V}$; $V_I = V_{IH(\text{AC})}$ or $V_{IL(\text{AC})}$	-	-	40	mA
I_{DDD}	dynamic operating current per MHz	clock only; $\overline{\text{RESET}} = V_{DD}$; $V_I = V_{IH(\text{AC})}$ or $V_{IL(\text{AC})}$; CK and $\overline{\text{CK}}$ switching at 50 % duty cycle; $I_O = 0 \text{ mA}$; $V_{DD} = 1.8 \text{ V}$	-	16	-	μA
		per each data input, 1 : 1 mode; $\overline{\text{RESET}} = V_{DD}$; $V_I = V_{IH(\text{AC})}$ or $V_{IL(\text{AC})}$; CK and $\overline{\text{CK}}$ switching at 50 % duty cycle; one data input switching at half clock frequency, 50 % duty cycle; $I_O = 0 \text{ mA}; V_{DD} = 1.8 \text{ V}$	-	11	-	μA
		per each data input, 1 : 2 mode; $\overline{\text{RESET}} = V_{DD}$; $V_I = V_{IH(\text{AC})}$ or $V_{IL(\text{AC})}$; CK and $\overline{\text{CK}}$ switching at 50 % duty cycle; one data input switching at half clock frequency, 50 % duty cycle; $I_O = 0 \text{ mA}; V_{DD} = 1.8 \text{ V}$	-	19	-	μA
C_i	input capacitance	data and $\overline{\text{CSR}}$ inputs; $V_I = V_{ref} \pm 250 \text{ mV}$; $V_{DD} = 1.8 \text{ V}$	2.5	-	3.5	pF
		CK and $\overline{\text{CK}}$ inputs; $V_{ICR} = 0.9 \text{ V}$; $V_{i(p-p)} = 600 \text{ mV}$; $V_{DD} = 1.8 \text{ V}$	2	-	3	pF
		$\overline{\text{RESET}}$ input; $V_I = V_{DD}$ or GND; $V_{DD} = 1.8 \text{ V}$	3	-	4	pF

Input RESET

V_{IL}	LOW-level input voltage	-0.5	-	$+0.3V_{DD}$	V	
V_{IH}	HIGH-level input voltage	$0.7V_{DD}$	-	2.5	V	
I_I	input current	$V_I = V_{DD}$	-5	-	± 5	μA
I_L	leakage current	$V_I = V_{SS}$	-100	-25	-10	μA

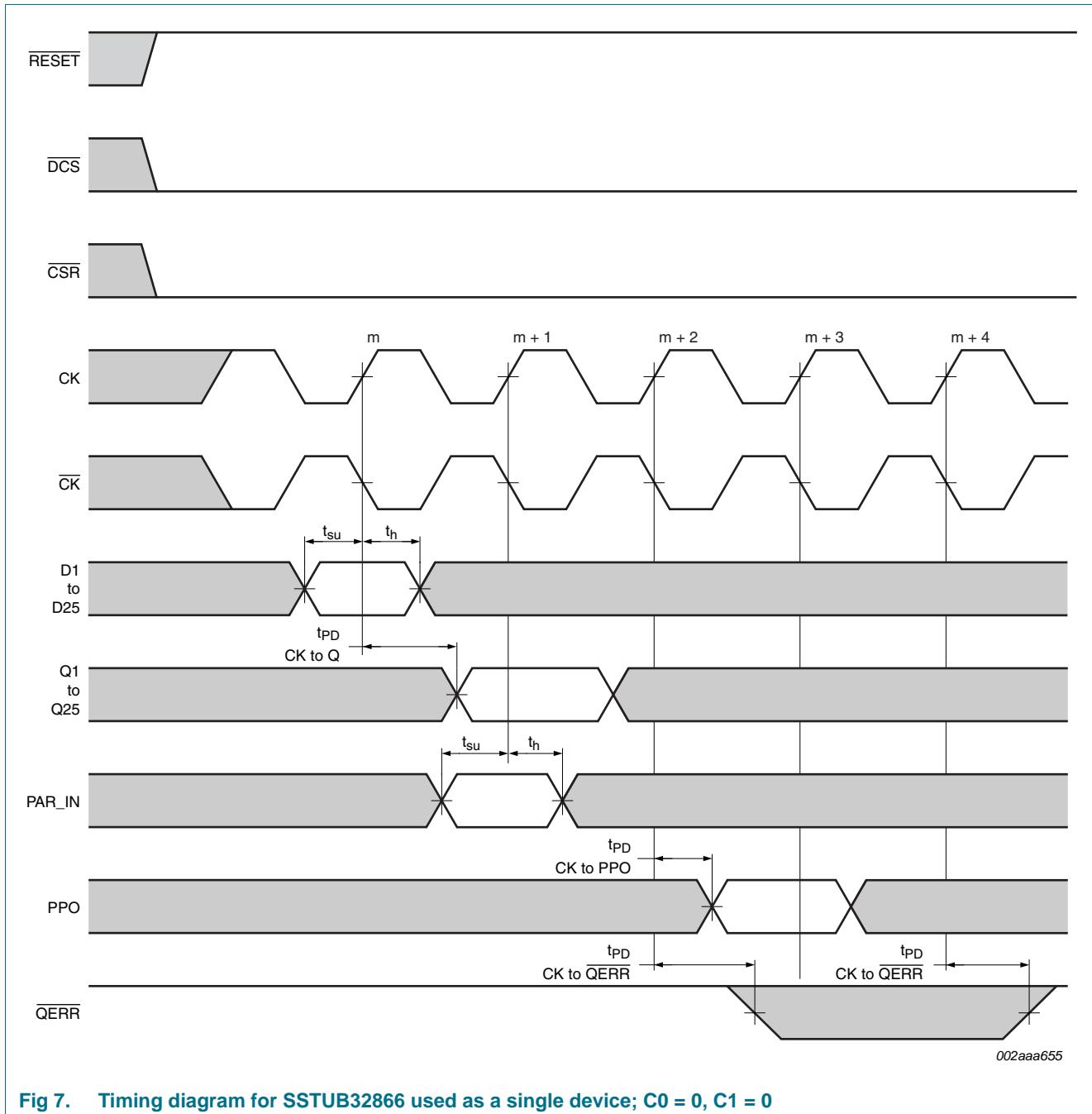
Table 9. Timing requirementsAt recommended operating conditions (see [Table 7](#)), unless otherwise specified. See [Section 11.1](#).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
f_{clock}	clock frequency		-	-	450	MHz	
t_W	pulse width	CK, \overline{CK} HIGH or LOW	1	-	-	ns	
t_{ACT}	differential inputs active time		[1][2]	-	-	10	ns
t_{INACT}	differential inputs inactive time		[1][3]	-	-	15	ns
t_{su}	set-up time	<u>DCS</u> before CK↑, $\overline{CK}\downarrow$, <u>CSR</u> HIGH; CSR before CK↑, CK↓, <u>DCS</u> HIGH	0.6	-	-	ns	
		<u>DCS</u> before CK↑, $\overline{CK}\downarrow$, <u>CSR</u> LOW	0.5	-	-	ns	
		<u>DODT</u> , <u>DCKE</u> and data (Dn) before CK↑, CK↓	0.5	-	-	ns	
		<u>PAR_IN</u> before CK↑, $\overline{CK}\downarrow$	0.5	-	-	ns	
t_h	hold time	DCS, <u>DODT</u> , <u>DCKE</u> and data (Dn) after CK↑, $\overline{CK}\downarrow$	0.4	-	-	ns	
		<u>PAR_IN</u> after CK↑, $\overline{CK}\downarrow$	0.4	-	-	ns	

[1] This parameter is not necessarily production tested.

[2] VREF must be held at a valid input voltage level and data inputs must be held LOW for a minimum time of $t_{INACT(max)}$ after RESET is taken HIGH.[3] VREF, data and clock inputs must be held at valid levels (not floating) a minimum time of $t_{INACT(max)}$ after RESET is taken LOW.**Table 10. Switching characteristics**At recommended operating conditions (see [Table 7](#)), unless otherwise specified. See [Section 11.1](#).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
f_{max}	maximum input clock frequency		450	-	-	MHz	
t_{PDM}	peak propagation delay	single bit switching; from CK↑ and $\overline{CK}\downarrow$ to Qn	[1]	1.1	-	1.5	ns
t_{PD}	propagation delay	from CK↑ and $\overline{CK}\downarrow$ to PPO	0.5	-	1.7	ns	
t_{LH}	LOW to HIGH delay	from CK↑ and $\overline{CK}\downarrow$ to <u>QERR</u>	1.2	-	3	ns	
t_{HL}	HIGH to LOW delay	from CK↑ and $\overline{CK}\downarrow$ to <u>QERR</u>	1	-	2.4	ns	
t_{PDMSS}	simultaneous switching peak propagation delay	from CK↑ and $\overline{CK}\downarrow$ to Qn	[1][2]	-	-	1.6	ns
t_{PHL}	HIGH to LOW propagation delay	from <u>RESET</u> ↓ to Qn↓	-	-	3	ns	
		from <u>RESET</u> ↓ to PPO↓	-	-	3	ns	
t_{PLH}	LOW to HIGH propagation delay	from <u>RESET</u> ↓ to <u>QERR</u> ↑	-	-	3	ns	


[1] Includes 350 ps of test load transmission line delay.

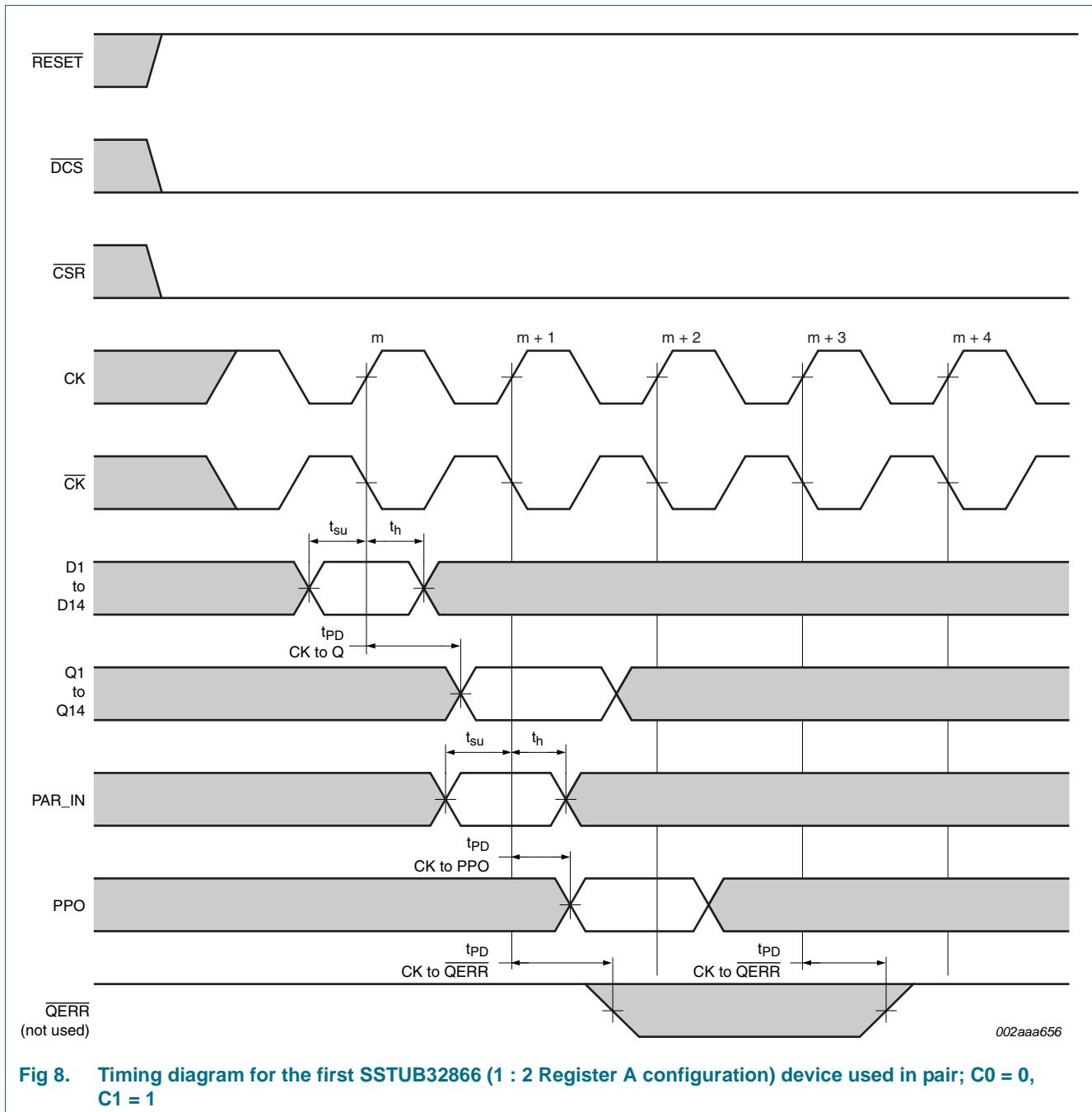
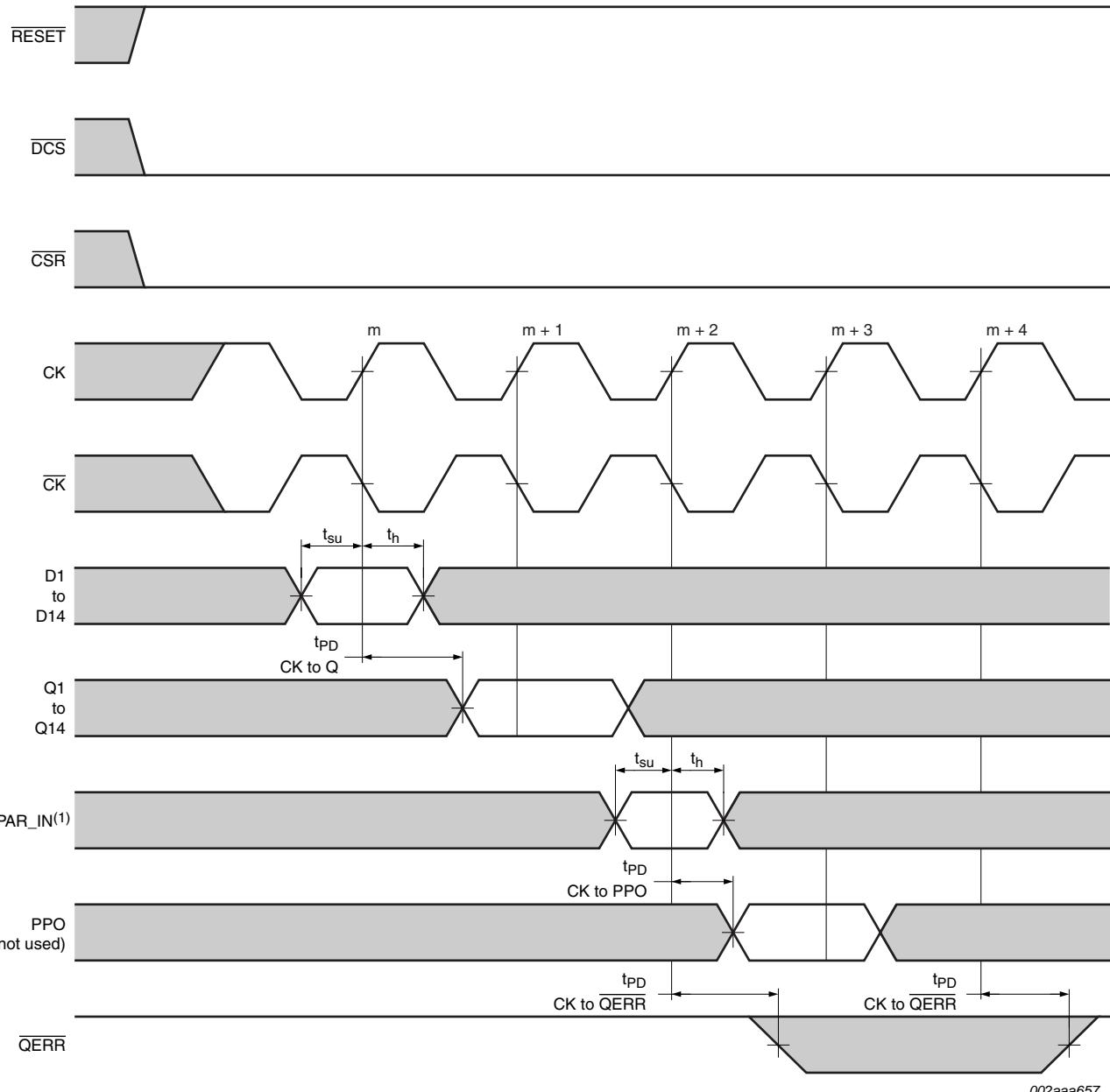

[2] This parameter is not necessarily production tested.

Table 11. Data output edge ratesAt recommended operating conditions (see [Table 7](#)), unless otherwise specified. See [Section 11.2](#).

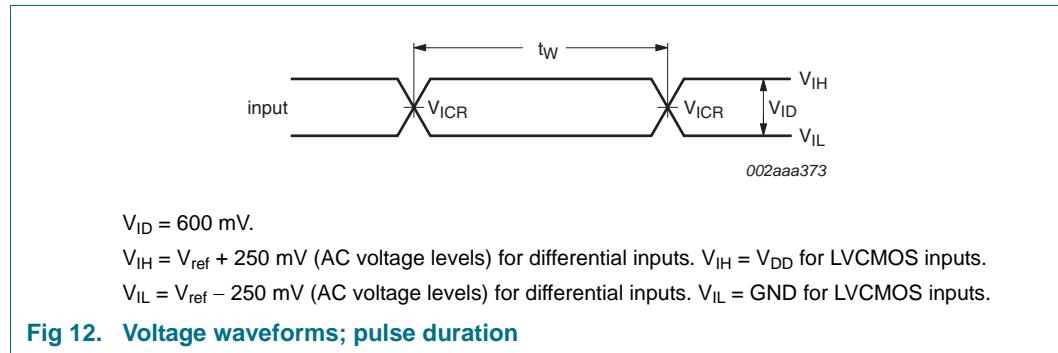
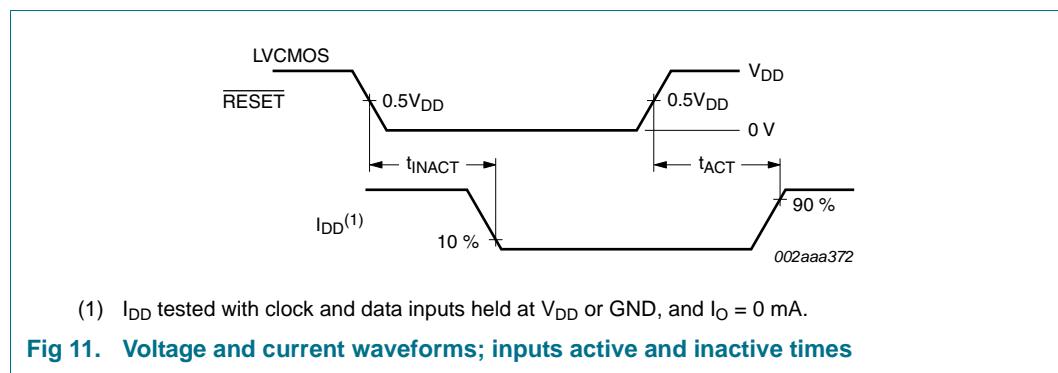
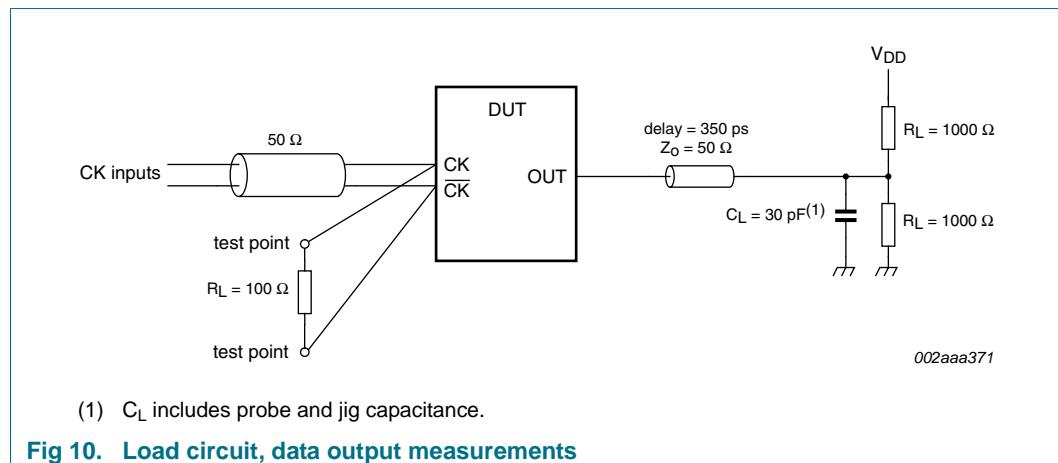

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
dV/dt_r	rising edge slew rate	from 20 % to 80 %	1	-	4	V/ns
dV/dt_f	falling edge slew rate	from 80 % to 20 %	1	-	4	V/ns
dV/dt_{Δ}	absolute difference between dV/dt_r and dV/dt_f	from 20 % or 80 % to 80 % or 20 %	-	-	1	V/ns

10.1 Timing diagrams

Fig 8. Timing diagram for the first SSTUB32866 (1 : 2 Register A configuration) device used in pair; C0 = 0, C1 = 1

(1) PAR_IN is driven from PPO of the first SSTUB32866 device.

Fig 9. Timing diagram for the second SSTUB32866 (1 : 2 Register B configuration) device used in pair; C0 = 1, C1 = 1




11. Test information

11.1 Parameter measurement information for data output load circuit

$V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}$.

All input pulses are supplied by generators having the following characteristics:
 $\text{PRR} \leq 10 \text{ MHz}$; $Z_0 = 50 \Omega$; input slew rate = $1 \text{ V/}\mu\text{s} \pm 20 \%$, unless otherwise specified.

The outputs are measured one at a time with one transition per measurement.

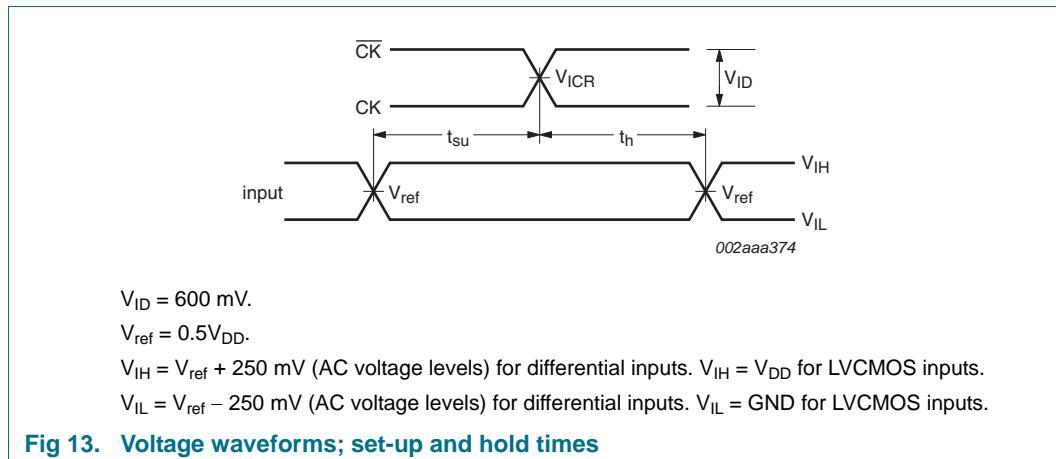


Fig 13. Voltage waveforms; set-up and hold times

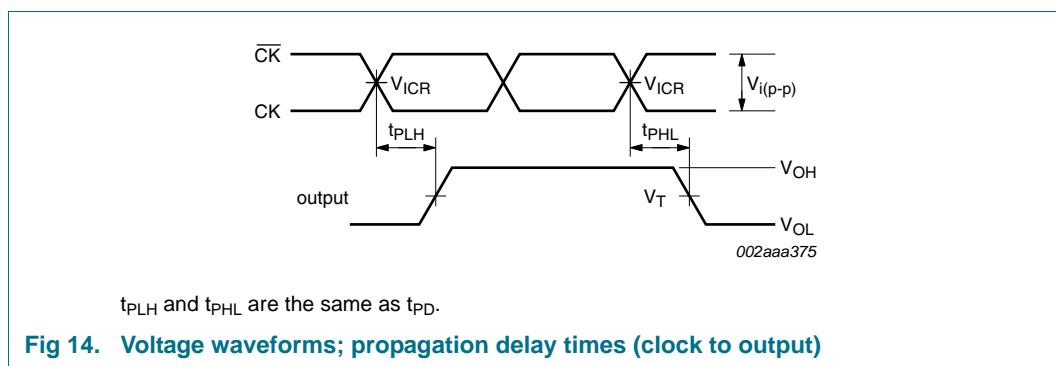


Fig 14. Voltage waveforms; propagation delay times (clock to output)

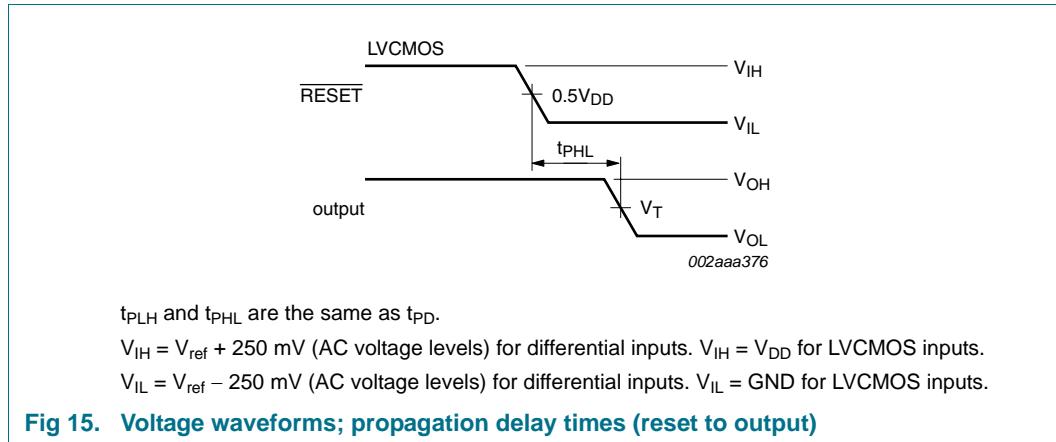
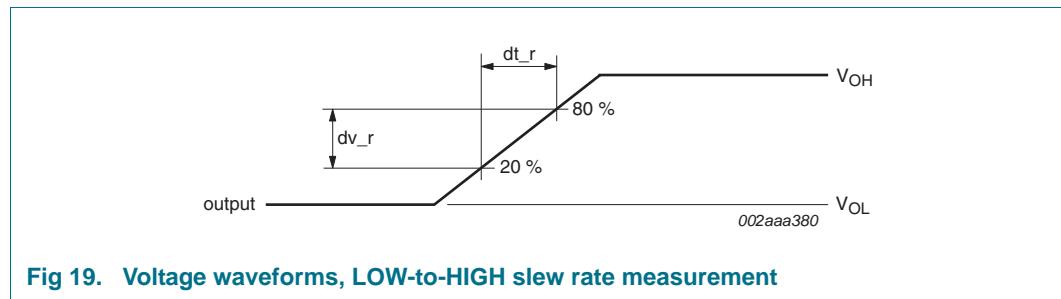
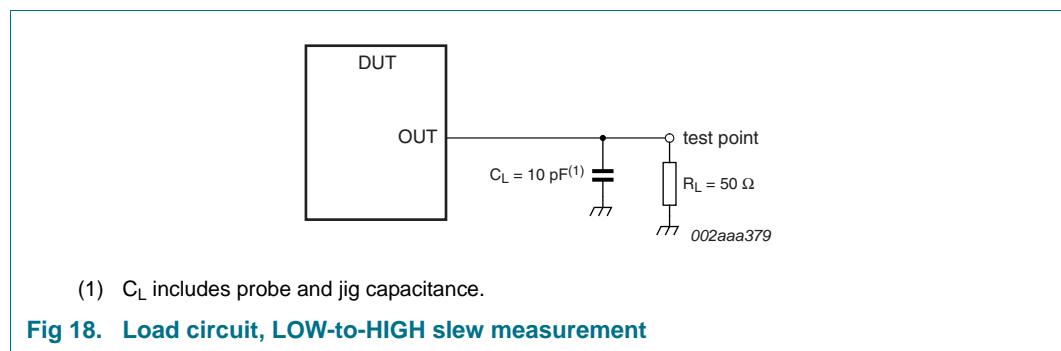
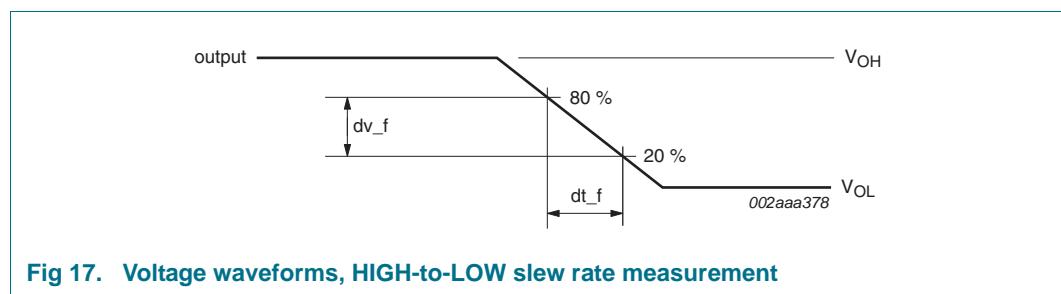
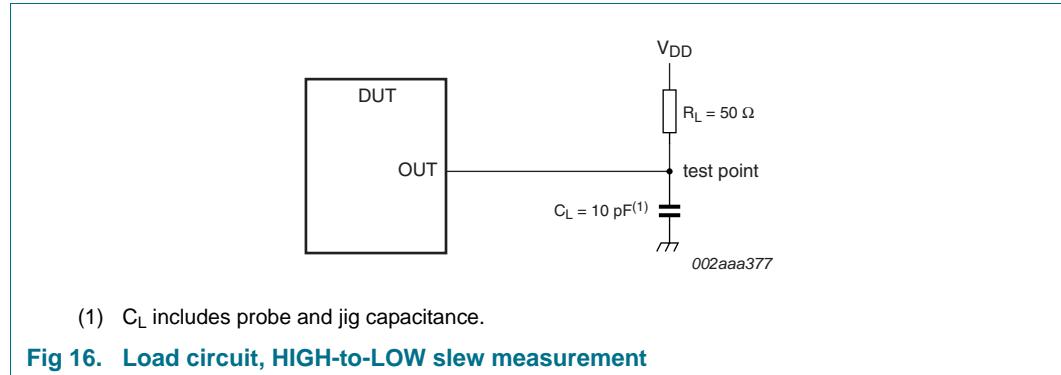
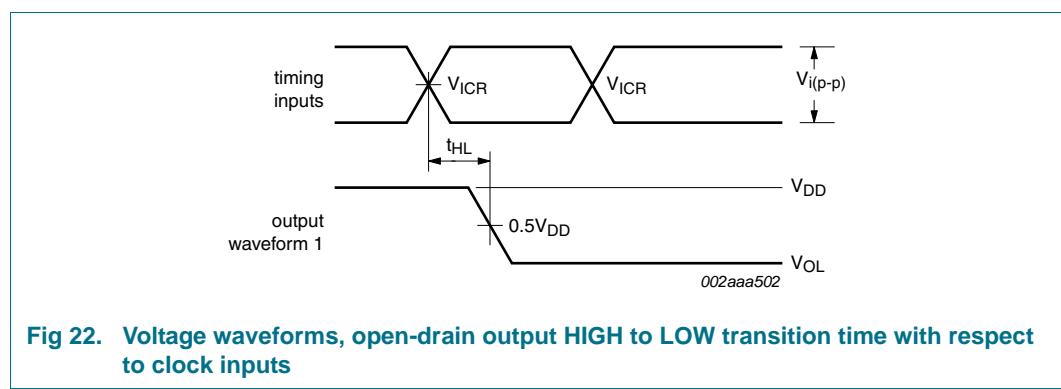
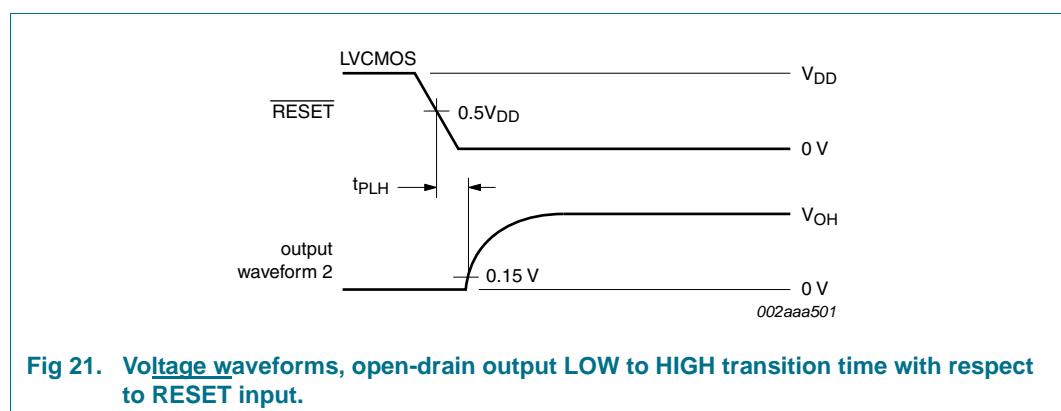
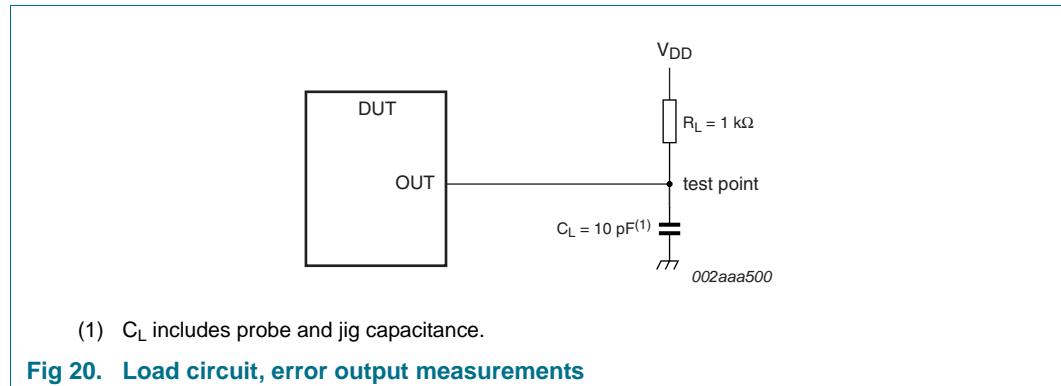






Fig 15. Voltage waveforms; propagation delay times (reset to output)

11.2 Data output slew rate measurement information

$V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}$.




All input pulses are supplied by generators having the following characteristics:
 $\text{PRR} \leq 10 \text{ MHz}$; $Z_0 = 50 \Omega$; input slew rate = $1 \text{ V/ns} \pm 20 \%$, unless otherwise specified.

11.3 Error output load circuit and voltage measurement information

$V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}$.

All input pulses are supplied by generators having the following characteristics:
 $\text{PRR} \leq 10 \text{ MHz}$; $Z_0 = 50 \Omega$; input slew rate = $1 \text{ V/ns} \pm 20 \%$, unless otherwise specified.

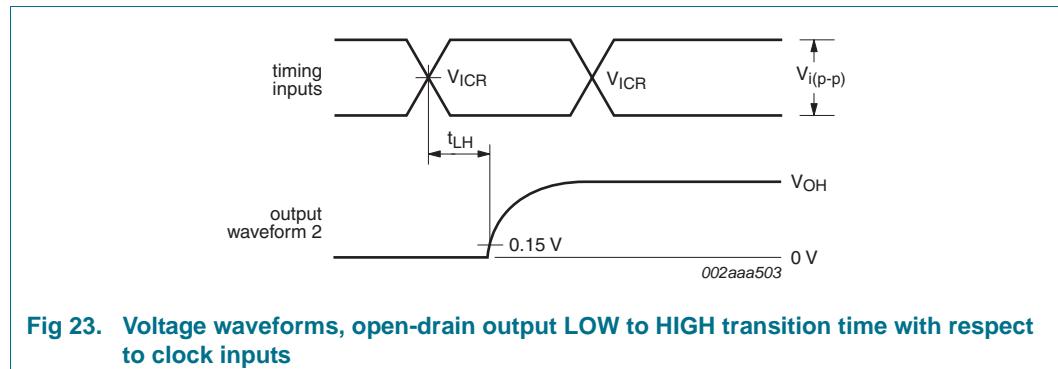


Fig 23. Voltage waveforms, open-drain output LOW to HIGH transition time with respect to clock inputs

11.4 Partial parity out load circuit and voltage measurement information

$V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}$.

All input pulses are supplied by generators having the following characteristics: $\text{PRR} \leq 10 \text{ MHz}$; $Z_0 = 50 \Omega$; input slew rate = $1 \text{ V/ns} \pm 20 \%$, unless otherwise specified.

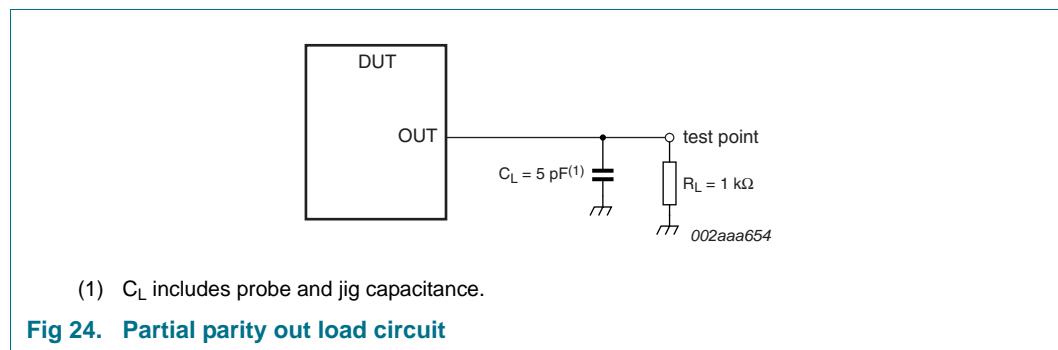


Fig 24. Partial parity out load circuit

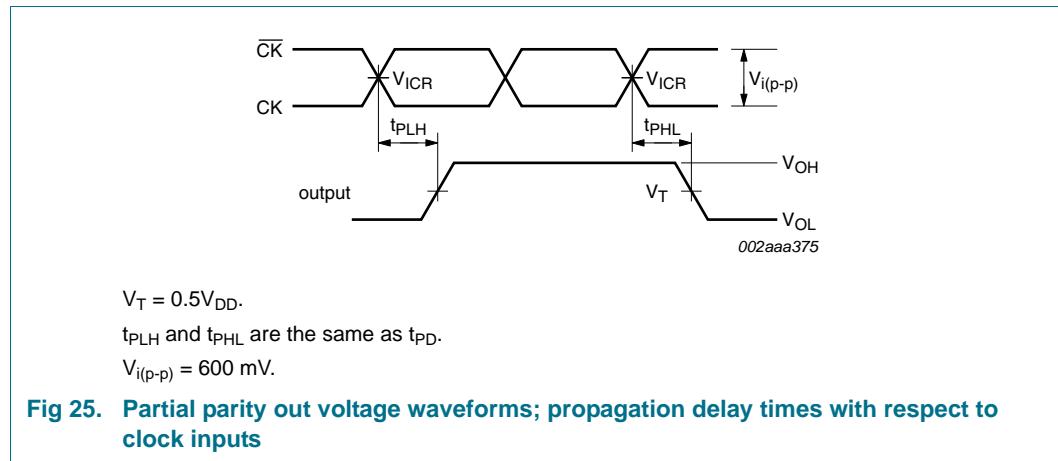
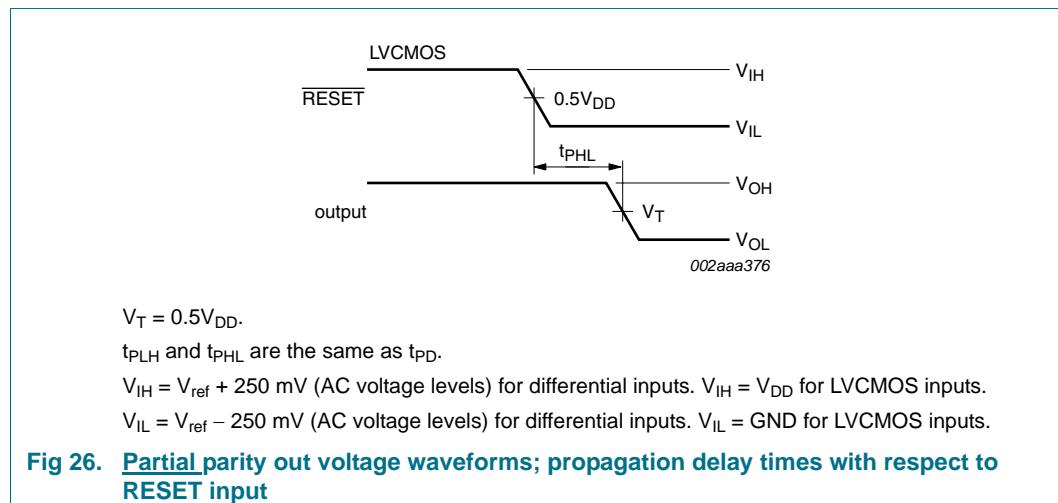



Fig 25. Partial parity out voltage waveforms; propagation delay times with respect to clock inputs

12. Package outline

LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 x 5.5 x 1.05 mm SOT536-1

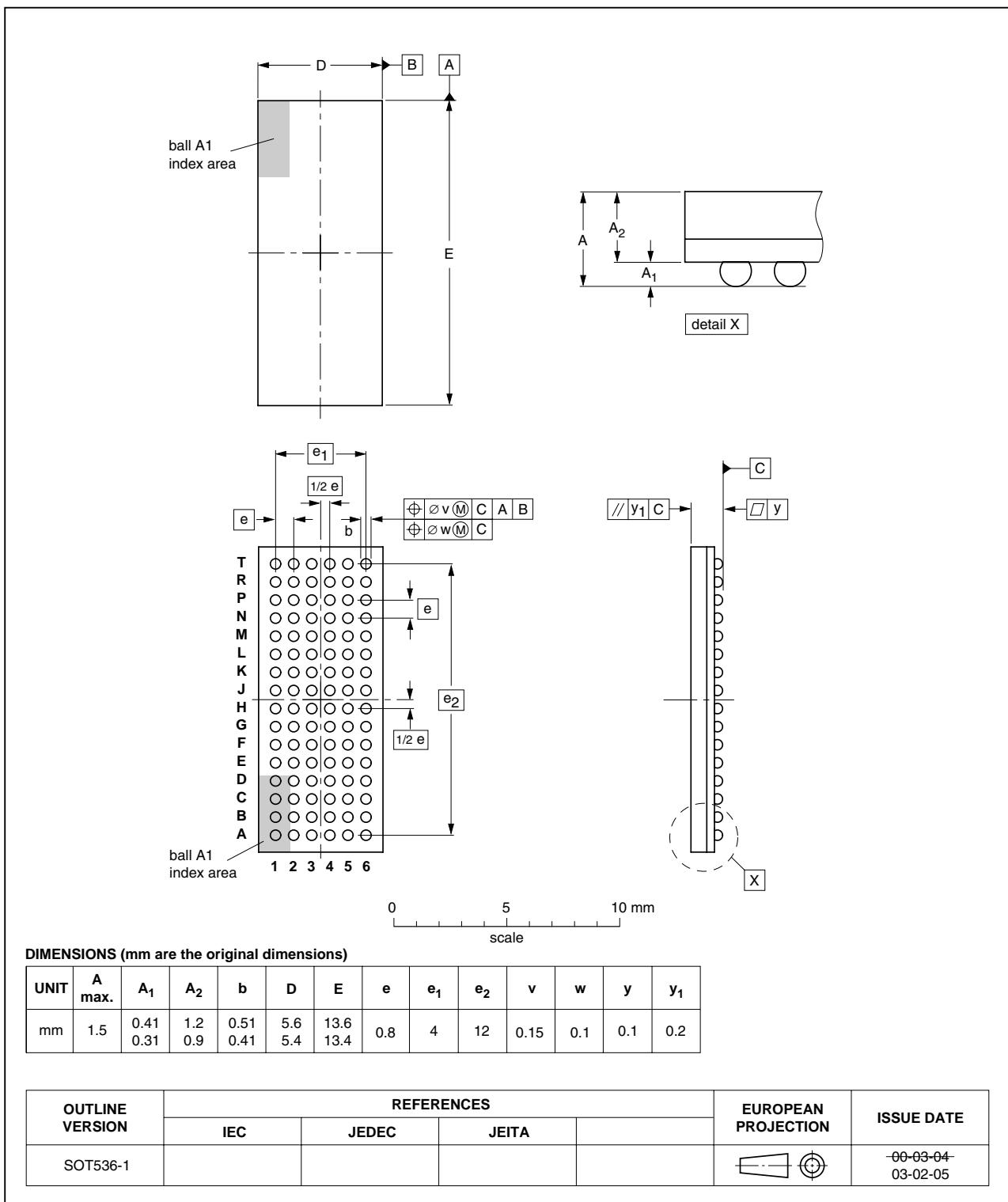


Fig 27. Package outline SOT536-1 (LFBGA96)

13. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note AN10365 “Surface mount reflow soldering description”.

13.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

13.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

13.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

13.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see [Figure 28](#)) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with [Table 12](#) and [13](#)

Table 12. SnPb eutectic process (from J-STD-020C)

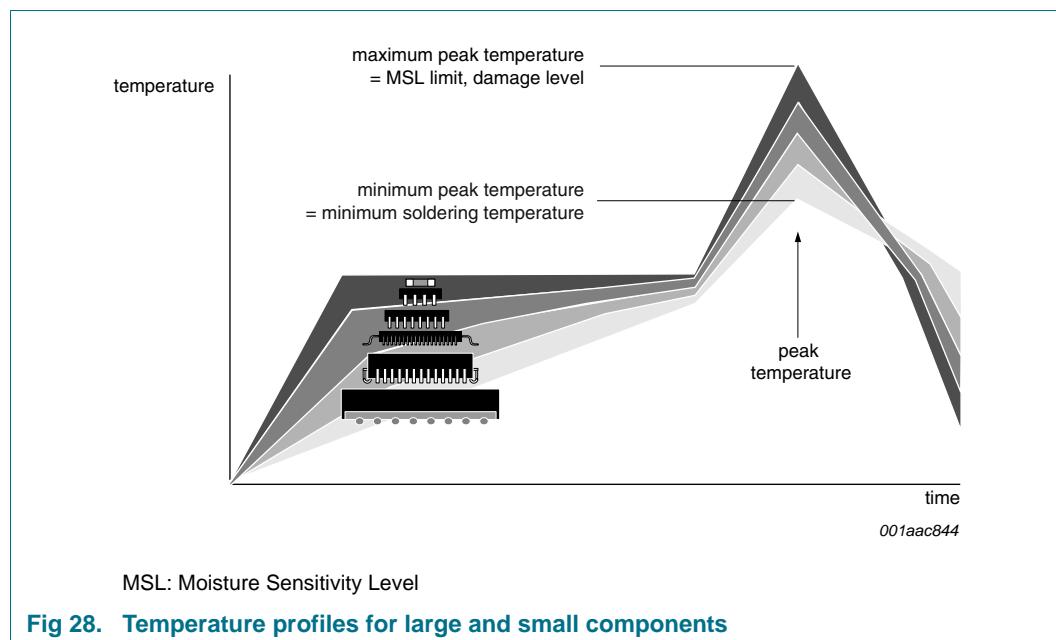

Package thickness (mm)	Package reflow temperature (°C)	
	Volume (mm ³)	
	< 350	≥ 350
< 2.5	235	220
≥ 2.5	220	220

Table 13. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	350 to 2000	> 2000
< 1.6	260	260	260
1.6 to 2.5	260	250	245
> 2.5	250	245	245

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see [Figure 28](#).

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

14. Abbreviations

Table 14. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DDR	Double Data Rate
DIMM	Dual In-line Memory Module
LVC MOS	Low Voltage Complementary Metal Oxide Semiconductor
PPO	Partial Parity Out
PRR	Pulse Repetition Rate
RDIMM	Registered Dual In-line Memory Module
SSTL	Stub Series Terminated Logic

15. Revision history

Table 15. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
SSTUB32866_4	20100415	Product data sheet	-	SSTUB32866_3
Modifications:				<ul style="list-style-type: none">• Section 1 "General description", first paragraph: deleted second sentence• Table 8 "Characteristics": added sub-section "Input $\overline{\text{RESET}}$"
SSTUB32866_3	20070423	Product data sheet	-	SSTUB32866_2
SSTUB32866_2	20061009	Product data sheet	-	SSTUB32866_1
SSTUB32866_1	20060518	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <http://www.nxp.com>.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <http://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: <http://www.nxp.com>

For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1	General description	1
2	Features and benefits	1
3	Applications	1
4	Ordering information	2
4.1	Ordering options	2
5	Functional diagram	3
6	Pinning information	5
6.1	Pinning	5
6.2	Pin description	7
7	Functional description	8
7.1	Function table	9
8	Limiting values	10
9	Recommended operating conditions	11
10	Characteristics	12
10.1	Timing diagrams	14
11	Test information	17
11.1	Parameter measurement information for data output load circuit	17
11.2	Data output slew rate measurement information	19
11.3	Error output load circuit and voltage measurement information	20
11.4	Partial parity out load circuit and voltage measurement information	21
12	Package outline	23
13	Soldering of SMD packages	24
13.1	Introduction to soldering	24
13.2	Wave and reflow soldering	24
13.3	Wave soldering	24
13.4	Reflow soldering	25
14	Abbreviations	26
15	Revision history	27
16	Legal information	28
16.1	Data sheet status	28
16.2	Definitions	28
16.3	Disclaimers	28
16.4	Trademarks	29
17	Contact information	29
18	Contents	30

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: <http://www.nxp.com>

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 April 2010

Document identifier: SSTUB32866_4

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[NXP](#):

[SSTUB32866EC/G-T](#)