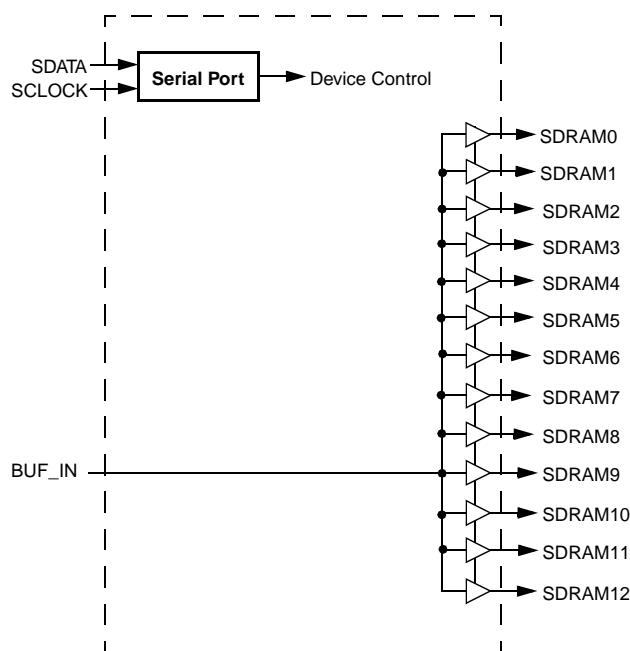


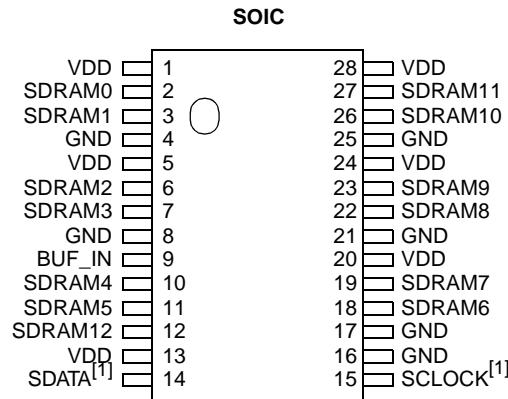
Clock Buffer/Driver

Features

- Thirteen skew-controlled CMOS clock outputs (SDRAM0:12)
- Supports three SDRAM DIMMs
- Ideal for high-performance systems designed around Intel's latest chip set
- SMBus serial configuration interface
- Clock Skew between any two outputs is less than 250 ps
- 1- to 5-ns propagation delay
- DC to 133-MHz operation
- Single 3.3V supply voltage
- Low power CMOS design packaged in a 28-pin, 300-mil SOIC (Small Outline Integrated Circuit), 28-pin, 173-mil (Thin Shrink Small Outline Package), and 28-pin, 209-mil SSOP (Small Shrink Outline Package)


Overview

The Cypress W40S11-23 is a low-voltage, thirteen-output clock buffer. Output buffer impedance is approximately 15Ω , which is ideal for driving SDRAM DIMMs.


Key Specifications

Supply Voltages:	$V_{DD} = 3.3V \pm 5\%$
Operating Temperature:	0°C to +70°C
Input Threshold:	1.5V typical
Maximum Input Voltage:	$V_{DD} + 0.5V$
Input Frequency:	0 to 133 MHz
BUF_IN to SDRAM0:12 Propagation Delay:	1.0 to 5.0 ns
Output Edge Rate:	$\geq 1.5 V/ns$
Output Clock Skew:	± 250 ps
Output Duty Cycle:	45/55% worst case
Output Impedance:	15Ω typical
Output Type:	CMOS rail-to-rail

Block Diagram

Pin Configuration

Note:

1. Internal pull-up resistor of 250K on SDATA and SCLOCK inputs (not CMOS level).

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
SDRAM0:12	2, 3, 6, 7, 10, 11, 18, 19, 22, 23, 26, 27, 12	O	SDRAM Outputs: Provides buffered copy of BUF_IN. The propagation delay from a rising input edge to a rising output edge is 1 to 5 ns. All outputs are skew controlled to within ± 250 ps of each other.
BUF_IN	9	I	Clock Input: This clock input has an input threshold voltage of 1.5V (typ).
SDATA	14	I/O	SMBus Data Input: Data should be presented to this input as described in the SMBus section of this data sheet. Internal 250-k Ω pull-up resistor.
SCLOCK	15	I	SMBus Clock Input: The SMBus data clock should be presented to this input as described in the SMBus section of this data sheet. Internal 250-k Ω pull-up resistor.
VDD	1, 5, 13, 20, 24, 28	P	Power Connection: Power supply for core logic and output buffers. Connected to 3.3V supply.
GND	4, 8, 16, 17, 21, 25	G	Ground Connection: Connect all ground pins to the common system ground plane.

Functional Description

Output Drivers

The W40S11-23 output buffers are CMOS type which deliver a rail-to-rail (GND to V_{DD}) output voltage swing into a nominal

capacitive load. Thus output signaling is both TTL and CMOS level compatible. Nominal output buffer impedance is 15 Ω .

Operation

Data is written to the W40S11-23 in ten bytes of eight bits each. Bytes are written in the order shown in *Table 1*.

Table 1. Byte Writing Sequence

Byte Sequence	Byte Name	Bit Sequence	Byte Description
1	Slave Address	11010010	Commands the W40S11-23 to accept the bits in Data Bytes 0–6 for internal register configuration. Since other devices may exist on the same common serial data bus, it is necessary to have a specific slave address for each potential receiver. The slave receiver address for the W40S11-23 is 11010010. Register setting will not be made if the Slave Address is not correct (or is for an alternate slave receiver).
2	Command Code	Don't Care	Unused by the W40S11-23, bit values are ignored (Don't Care). This byte must be included in the data write sequence to maintain proper byte allocation. The Command Code Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
3	Byte Count	Don't Care	Unused by the W40S11-23, bit values are ignored (Don't Care). This byte must be included in the data write sequence to maintain proper byte allocation. The Byte Count Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
4	Data Byte 0	Refer to <i>Table 2</i>	The data bits in these bytes set internal W40S11-23 registers that control device operation. The data bits are only accepted when the Address Byte bit sequence is 11010010, as noted above. For description of bit control functions refer to <i>Table 2</i> .
5	Data Byte 1		
6	Data Byte 2		
7	Data Byte 3	Don't Care	Refer to Cypress Frequency Timing Generators.
8	Data Byte 4		
9	Data Byte 5		
10	Data Byte 6		

Writing Data Bytes

Each bit in the data bytes control a particular device function. Bits are written MSB (most significant bit) first, which is bit 7.

Table 2 gives the bit formats for registers located in Data Bytes 0–6.

Table 2. Data Bytes 0–2 Serial Configuration Map^[2]

Bit(s)	Affected Pin		Control Function	Bit Control	
	Pin No.	Pin Name		0	1
Data Byte 0 SDRAM Active/Inactive Register (1 = Enable, 0 = Disable)					
7	11	SDRAM5	Clock Output Disable	Low	Active
6	10	SDRAM4	Clock Output Disable	Low	Active
5	N/A	Reserved	(Reserved)	-	-
4	N/A	Reserved	(Reserved)	-	-
3	7	SDRAM3	Clock Output Disable	Low	Active
2	6	SDRAM2	Clock Output Disable	Low	Active
1	3	SDRAM1	Clock Output Disable	Low	Active
0	2	SDRAM0	Clock Output Disable	Low	Active
Data Byte 1 SDRAM Active/Inactive Register (1 = Enable, 0 = Disable)					
7	27	SDRAM11	Clock Output Disable	Low	Active
6	26	SDRAM10	Clock Output Disable	Low	Active
5	23	SDRAM9	Clock Output Disable	Low	Active
4	22	SDRAM8	Clock Output Disable	Low	Active
3	N/A	Reserved	(Reserved)	-	-
2	N/A	Reserved	(Reserved)	-	-
1	19	SDRAM7	Clock Output Disable	Low	Active
0	18	SDRAM6	Clock Output Disable	Low	Active
Data Byte 2 SDRAM Active/Inactive Register (1 = Enable, 0 = Disable)					
7	N/A	Reserved	(Reserved)	-	-
6	12	SDRAM12	Clock Output Disable	Low	Active
5	N/A	Reserved	(Reserved)	--	--
4	N/A	Reserved	(Reserved)	--	--
3	N/A	Reserved	(Reserved)	--	--
2	N/A	Reserved	(Reserved)	--	--
1	N/A	Reserved	(Reserved)	--	--
0	N/A	Reserved	(Reserved)	--	--

Note:

- At power-up all SDRAM outputs are enabled and active. Program Reserved bits to a “0.”

How To Use the Serial Data Interface

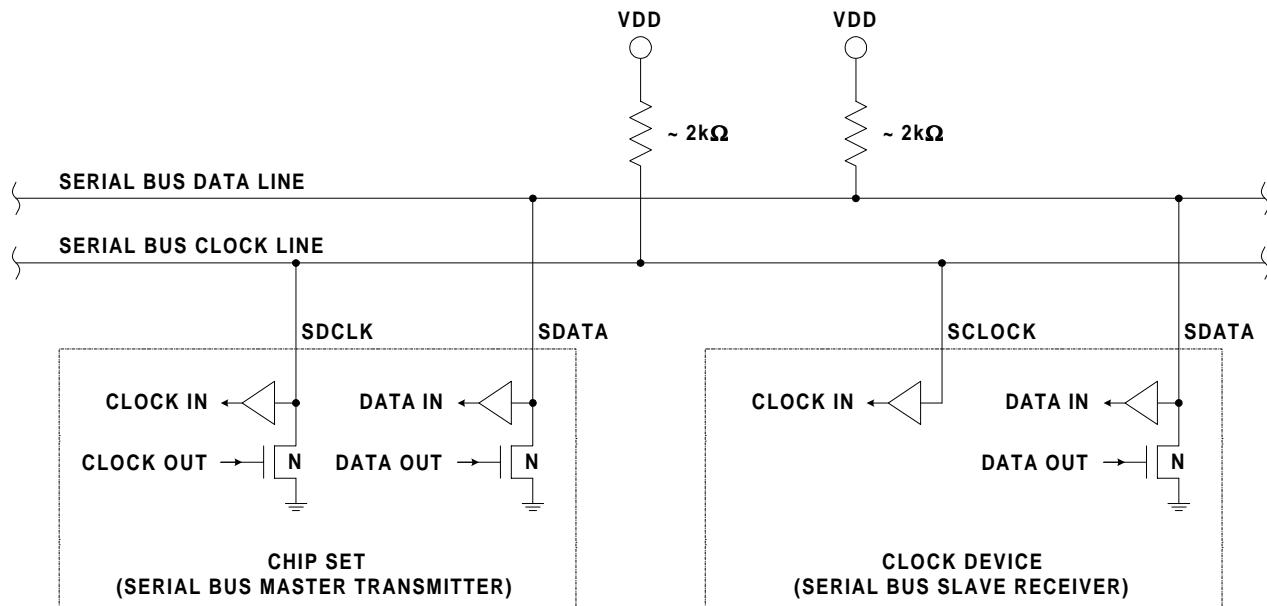
Electrical Requirements

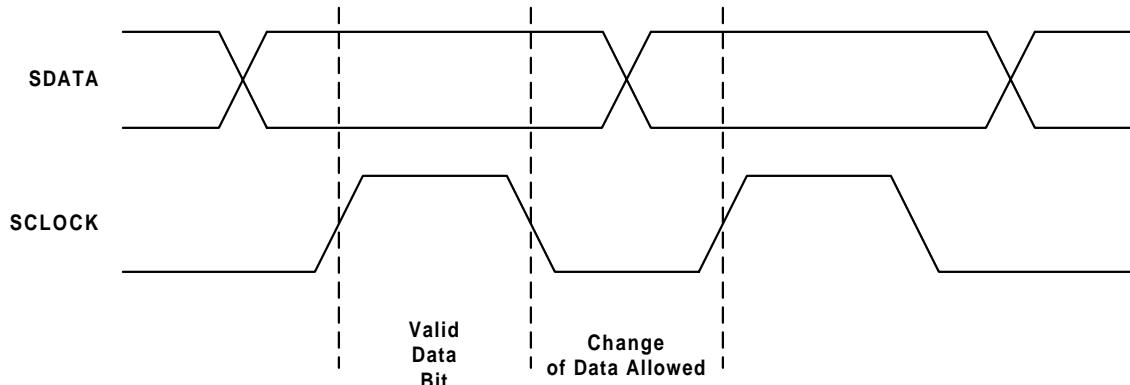
Figure 1 illustrates electrical characteristics for the serial interface bus used with the W40S11-23. Devices send data over the bus with an open drain logic output that can (a) pull the bus line LOW, or (b) let the bus default to logic 1. The pull-up resistor on the bus (both clock and data lines) establish a default

logic 1. All bus devices generally have logic inputs to receive data.

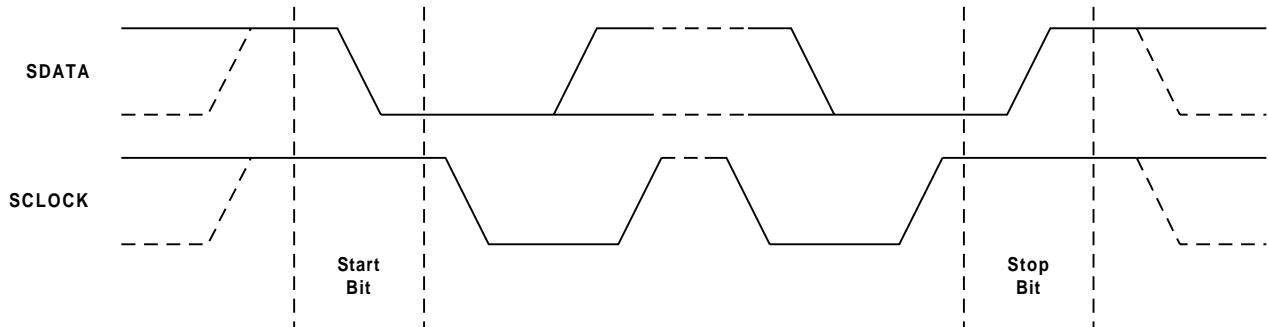
Although the W40S11-23 is a receive-only device (no data write-back capability), it does transmit an “acknowledge” data pulse after each byte is received. Thus, the SDATA line can both transmit and receive data.

The pull-up resistor should be sized to meet the rise and fall times specified in AC parameters, taking into consideration total bus line capacitance.

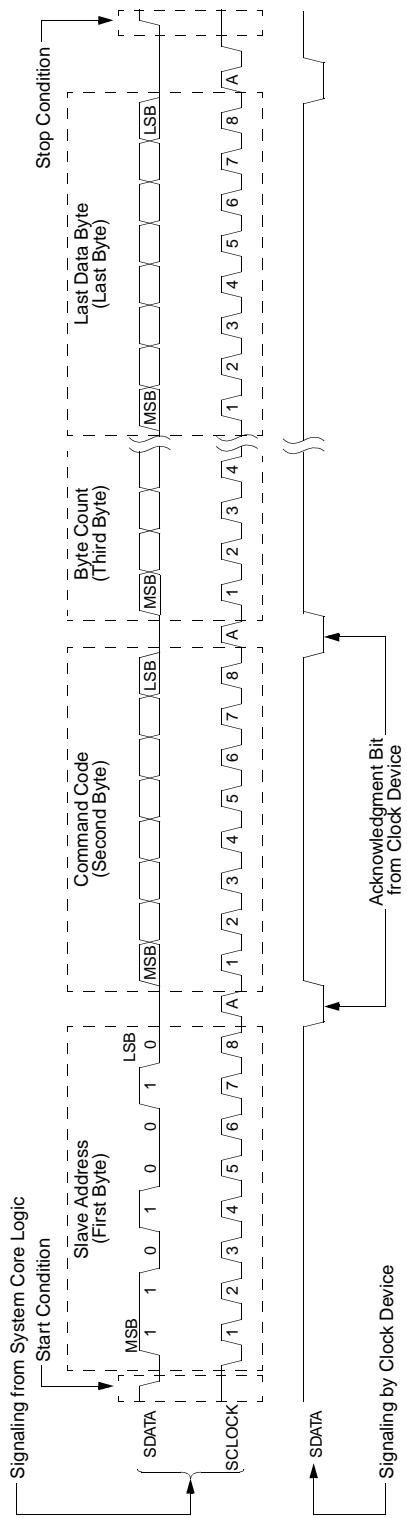



Figure 1. Serial Interface Bus Electrical Characteristics

Signaling Requirements


As shown in *Figure 2*, valid data bits are defined as stable logic 0 or 1 condition on the data line during a clock HIGH (logic 1) pulse. A transitioning data line during a clock HIGH pulse may be interpreted as a start or stop pulse (it will be interpreted as a start or stop pulse if the start/stop timing parameters are met).

A write sequence is initiated by a “start bit” as shown in *Figure 3*. A “stop bit” signifies that a transmission has ended.


As stated previously, the W40S11-23 sends an “acknowledge” pulse after receiving eight data bits in each byte as shown in *Figure 4*.

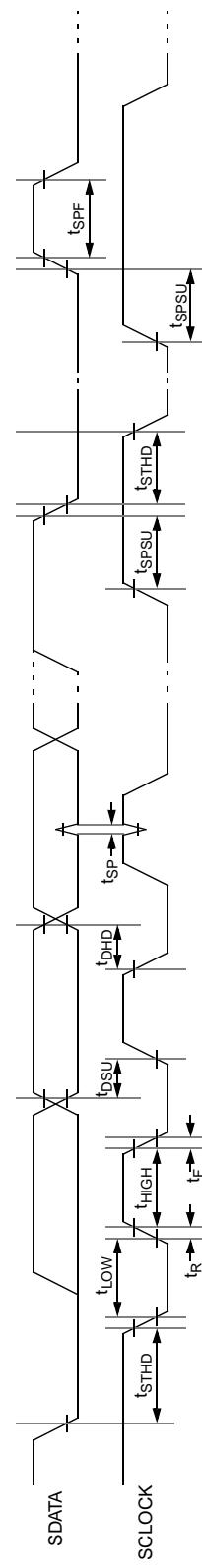

Figure 2. Serial Data Bus Valid Data Bit

Figure 3. Serial Data Bus Start and Stop Bit

Figure 4. Serial Data Bus Write Sequence

Figure 5. Serial Data Bus Timing Diagram

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions

above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

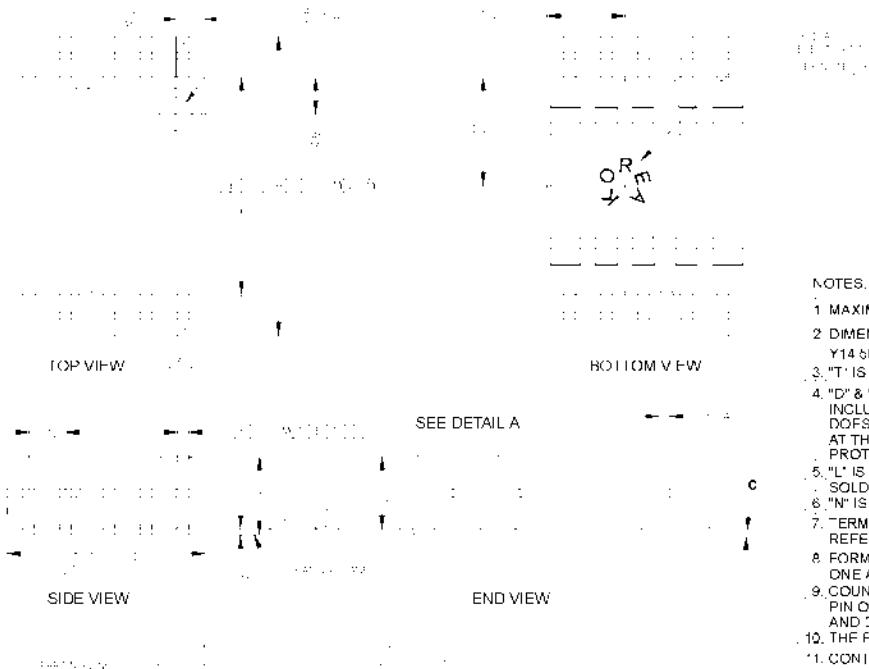
Parameter	Description	Rating	Unit
V_{DD} , V_{IN}	Voltage on any pin with respect to GND	−0.5 to +7.0	V
T_{STG}	Storage Temperature	−65 to +150	°C
T_A	Operating Temperature	0 to +70	°C
T_B	Ambient Temperature under Bias	−55 to +125	°C

DC Electrical Characteristics: $T_A = 0^\circ\text{C}$ to $+70^\circ\text{C}$, $V_{DD} = 3.3\text{V} \pm 5\%$

Parameter	Description	Test Condition/Comments	Min.	Typ.	Max.	Unit
I_{DD}	3.3V Supply Current	BUF_IN = 100 MHz			250	mA
Logic Inputs						
V_{IL}	Input Low Voltage		GND−0.3		0.8	V
V_{IH}	Input High Voltage		2.0		$V_{DD}+0.5$	V
I_{ILEAK}	Input Leakage Current, BUF_IN		−5		+5	µA
I_{ILEAK}	Input Leakage Current ^[3]		−20		+5	µA
Logic Outputs (SDRAM0:12)						
V_{OL}	Output Low Voltage	$I_{OL} = 1\text{ mA}$			50	mV
V_{OH}	Output High Voltage	$I_{OH} = -1\text{ mA}$	3.1			V
I_{OL}	Output Low Current	$V_{OL} = 1.5\text{V}$	65	100	160	mA
I_{OH}	Output High Current	$V_{OH} = 1.5\text{V}$	70	110	185	mA
Pin Capacitance/Inductance						
C_{IN}	Input Pin Capacitance				5	pF
C_{OUT}	Output Pin Capacitance				6	pF
L_{IN}	Input Pin Inductance				7	nH

Note:

3. SDATA and SCLOCK logic pins have 250-kΩ internal pull-up resistors.


AC Electrical Characteristics: $T_A = 0^\circ\text{C}$ to $+70^\circ\text{C}$, $V_{DD} = 3.3\text{V} \pm 5\%$ (Lump Capacitance Test Load = 30 pF)

Parameter	Description	Test Condition	Min	Typ	Max	Unit
f_{IN}	Input Frequency		0		133	MHz
t_R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1.5		4.0	V/ns
t_F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1.5		4.0	V/ns
t_{SR}	Output Skew, Rising Edges				250	ps
t_{SF}	Output Skew, Falling Edges				250	ps
t_{EN}	Output Enable Time		1.0		8.0	ns
t_{DIS}	Output Disable Time		1.0		8.0	ns
t_{PR}	Rising Edge Propagation Delay		1.0		5.0	ns
t_{PF}	Falling Edge Propagation Delay		1.0		5.0	ns
t_D	Duty Cycle	Measured at 1.5V	45		55	%
Z_o	AC Output Impedance			15		Ω
t_{PR}	Rising Edge Propagation Delay		1.0		5.0	ns

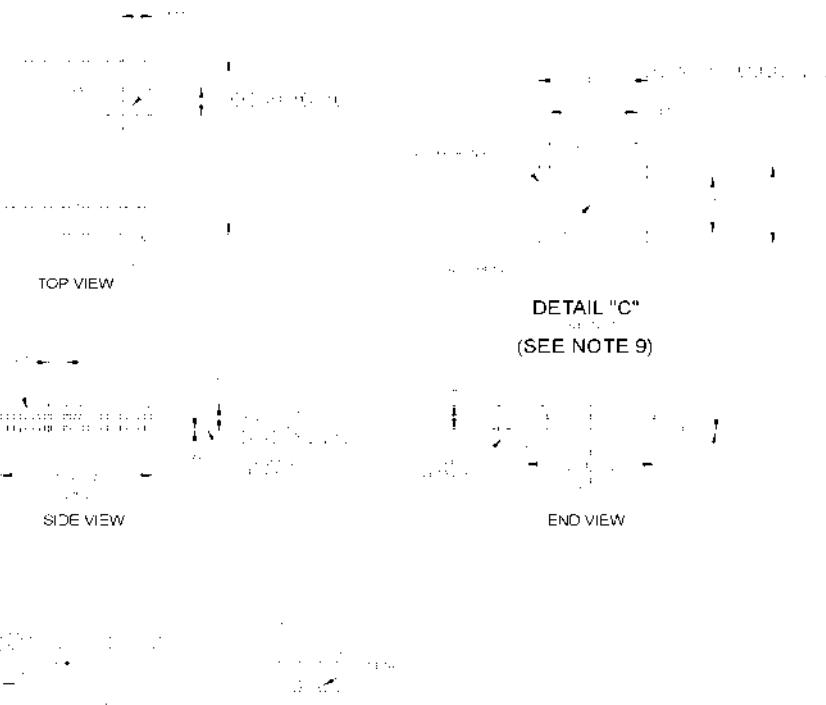
Ordering Information

Ordering Code	Freq. Mask Code	Package Name	Package Type
W40S11	-23	G X H	28-pin SOIC (300 mils) 28-pin TSSOP (173 mil) 28-pin SSOP (209 mil)

Document #: 38-00793-*B

Package Diagrams
28-Pin Small Outline Integrated Circuit (SOIC, 0.300 inch)

NOTES.

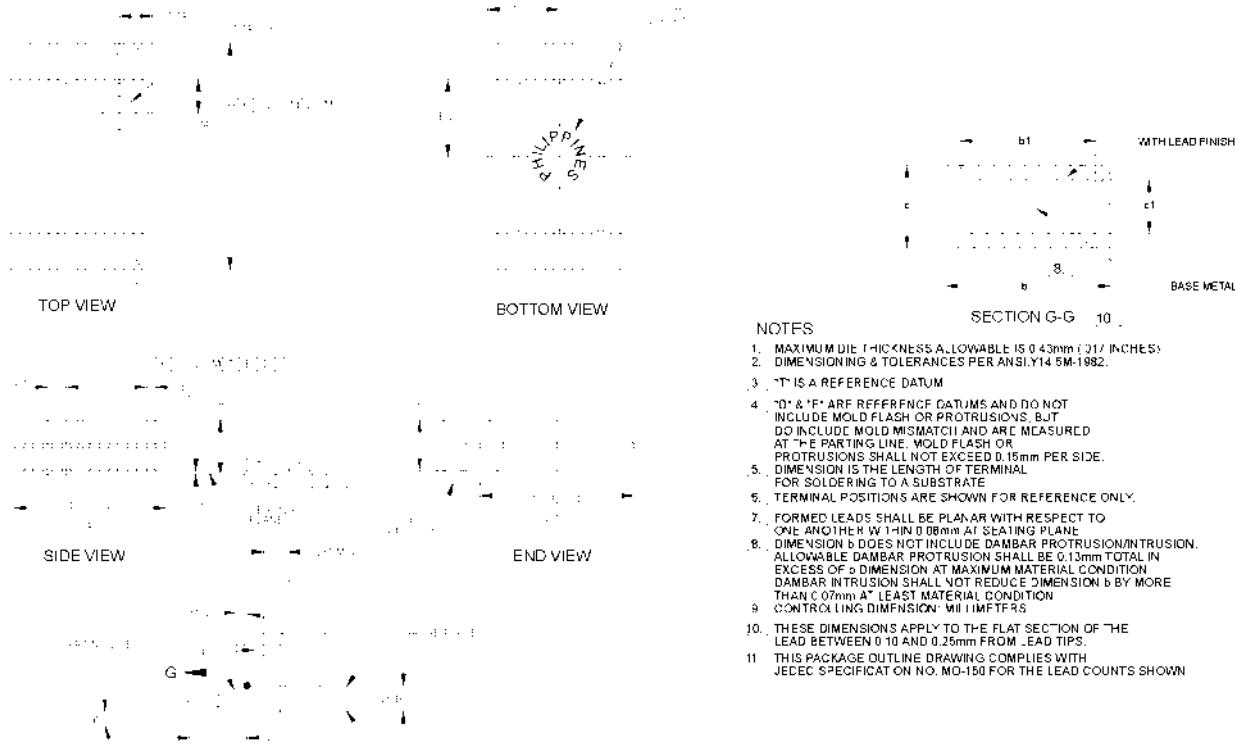

1. MAXIMUM DUE THICKNESS ALLOWABLE IS .025
2. DIMENSIONING & TOLERANCES PER ANSI Y14.5M - 1982
3. "T" IS A REFERENCE DATUM
4. "D" & "E" ARE REFERENCE DATUMS AND DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS, BUT DOES INCLUDE MOLD MISMATCH AND ARE MFASS.REFD AT THE MOLD PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
5. "L" IS THE LENGTH OF TERMINAL FOR SOLDERING TO A SUBSTRATE
6. "N" IS THE NUMBER OF TERMINAL POSITIONS
7. TERMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY
8. FORMED FAIDS SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN .003 INCHES AT SEATING PLANE.
9. COUNTRY OF ORIGIN, LOCATION AND EJECTOR PIN ON PACKAGE BOTTOM IS OPTIONAL AND DEPEND ON ASSEMBLY LOCATION
10. THE POCKETS ON THE BOTTOM ARE OPTIONAL
11. CONTROLLING DIMENSION INCHES

THIS TABLE IN INCHES

COMMON DIMENSIONS			NOTE VARIATIONS			3	5
MIN.	NOM.	MAX.	AA	MIN.	NOM.	D	N
A .097	.101	.104		.402	.407	.412	.16
A .0050	.009	.0115	AB	.451	.456	.461	.18
A .090	.092	.094	AC	.500	.505	.510	.20
B .014	.016	.019	AD	.602	.607	.612	.24
C .0091	.010	.0125	AE	.701	.706	.711	.28
D SEE VARIATIONS				3			
E .292	.296	.299					
e .050 BSC							
H .400	.406	.410					
H .010	.013	.016					
L .024	.032	.040					
N SEE VARIATIONS				5			
0° 5° 8°							
X .085	.093	.100					

THIS TABLE IN MILLIMETERS

COMMON DIMENSIONS			NOTE VARIATIONS			3	5
MIN.	NOM.	MAX.	AA	MIN.	NOM.	D	N
A 2.46	2.56	2.64		10.21	10.34	10.46	16
A 0.127	0.22	0.29	AB	11.46	11.58	11.71	18
A 2.29	2.34	2.39	AC	12.70	12.83	12.95	20
B 0.35	0.41	0.48	AD	15.29	15.42	15.54	24
C 0.23	0.25	0.32	AE	17.81	17.93	18.06	28
D SEE VARIATIONS				3			
E 7.42	7.52	7.59					
e 1.77 BSC							
H 10.16	10.31	10.41					
H 0.25	0.33	0.41					
L 0.61	0.81	1.02					
N SEE VARIATIONS				5			
0° 5° 8°							
X 2.16	2.36	2.54					


Package Diagrams (continued)
28-Pin Thin Shrink Small Outline Package (TSSOP, 173-mil)

DETAIL "C"
(SEE NOTE 9)
NOTES
DETAIL "A"
DETAIL "B"
THIS TABLE IN MILLIMETERS

COMMON DIMENSIONS			NOTE VARIATIONS	4	6
MIN.	NOM.	MAX.		D	N
A		1.10	AA	3.10	8
A	0.05	0.10	AB	5.10	14
A	0.85	0.90	AG	5.10	16
b	0.19	0.30	8	6.60	20
b1	0.19	0.22	AD	6.40	24
c	0.090	0.20	AE	7.70	28
c1	0.090	0.127	AF	9.60	28
D	SEE VARIATIONS		4		
E	4.30	4.40	4.50	4	
e	0.65 BSC				
H	6.25	6.40	6.50		
L	0.50	0.60	0.70	5	
N	SEE VARIATIONS		6		
	0°	4°	8°		

THIS TABLE IN INCHES

COMMON DIMENSIONS			NOTE VARIATIONS	4	6
MIN.	NOM.	MAX.		D	N
A		.0433	AA	.122	8
A	.002	.004	AB	.197	14
A	.0335	.0354	AC	.197	16
b	.0075	.0118	8	.256	20
b1	.0075	.0087	AD	.303	24
c	.0035	.0050	AE	.378	28
c1	.0035	.0050	AF	.382	28
D	SEE VARIATIONS		4		
E	.169	.173	.177	4	
e	.0256 BSC				
H	.246	.252	.256		
L	.020	.024	.026	5	
N	SEE VARIATIONS		6		
	0°	4°	8°		

VARIATION AF IS DESIGNED BUT NOT TOOLED

Package Diagrams (continued)
28-Pin Small Shrink Outline Package (SSOP, 209 mils)

THIS TABLE IN MILLIMETERS

COMMON DIMENSIONS			NOTE		
MIN.	NOM.	MAX.	VARIATIONS	MIN.	NOM.
A	1.73	1.85	1.98	AA	9.07
A	0.05	0.13	0.21	AB	8.20
A	1.68	1.73	1.78	AC	8.07
b	0.25	0.38	0.48	AD	7.07
b1	0.25	0.30	0.33	AE	8.07
c	0.09	0.20	0.26	AF	10.07
c1	0.09	0.15	0.16	AG	10.07
D	SEE VARIATIONS		10		
E	5.23	5.30	5.38		
e	0.65 BSC		4		
H	7.60	7.80	7.90		
L	0.63	0.75	0.95	5	
L1	1.25 REF				
N	SEE VARIATIONS		8		
R	0.09	0.15	0.20		

VARIATION AF
IS DESIGNED BUT NOT TOOLED
THIS TABLE IN INCHES

COMMON DIMENSIONS			NOTE		
MIN.	NOM.	MAX.	VARIATIONS	MIN.	NOM.
A	0.68	0.73	0.78	AA	.239
A	0.07	0.05	0.08	AB	.259
A	0.65	0.68	0.70	AC	.278
b	0.12	-	0.15	AD	.318
b1	0.12	0.12	0.13	AE	.397
c	0.04	-	0.08	AF	.397
c1	0.04	0.06	0.06	AG	.397
D	SEE VARIATIONS		4		
F	205	209	212		
e	.0256 BSC		4		
H	301	307	311		
L	0.25	0.30	0.37	5	
L1	0.49 REF				
N	SEE VARIATIONS		8		
R	0.04	0.06	0.06		