

Two Channel SATA 3-Gbps Redriver

FEATURES

- Data Rates up to 3.0 Gbps
- SATA Gen 2.6, eSATA Compliant
- SATA Hot-Plug Capable
- Supports Common-Mode Biasing for OOB Signaling with Fast Turn-On
- Channel Selectable Pre-Emphasis
- Fixed Receiver Equalization
- Integrated Termination
- Low Power

- <200 mW Typ
- <5 mW (in sleep mode)
- Excellent Jitter and Loss Compensation Capability to Over 20 Inch FR4 Trace
- 20-Pin 4 × 4 QFN Package

APPLICATIONS

- Notebooks, Desktops, Docking Stations, Servers, Workstations

DESCRIPTION

The SN75LVCP412 is a dual channel, single lane SATA redriver and signal conditioner supporting data rates up to 3.0 Gbps. The device complies with SATA specification revision 2.6 and eSATA requirements.

The SN75LVCP412 operates from a single 3.3-V supply and has 100- Ω line termination with self-biasing feature making the device suitable for AC coupling. The inputs incorporate an OOB detector, which automatically squelches the output while maintaining a stable output common-mode voltage compliant to SATA link. The device is also designed to handle SSC transmission per the SATA specification.

The SN75LVCP412 handles interconnect losses at both its input and output. The built-in transmitter pre-emphasis feature is capable of applying 0 dB or 2.5 dB of relative amplification at higher frequencies to counter the expected interconnect loss. On the receive side the device applies a fixed equalization of 7 dB to boost input frequencies near 1.5 GHz. Collectively, the input equalization and output pre-emphasis features of the device work to fully restore SATA signal integrity over extended cable and backplane pathways.

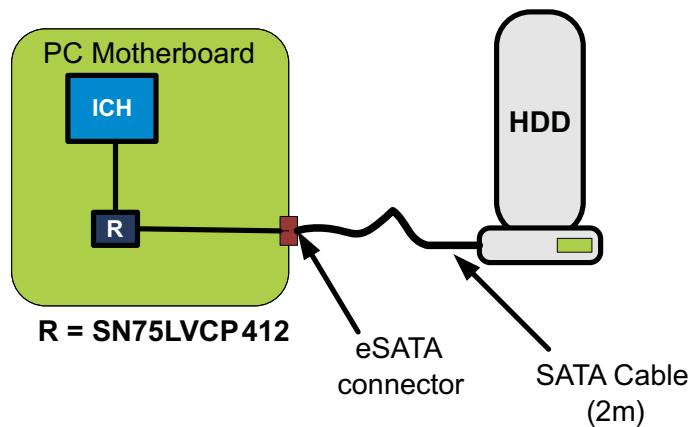
The device is hot-plug capable⁽¹⁾ preventing device damage under device hot-insertion such as async signal plug/removal, unpowered plug/removal, powered plug/removal, or surprise plug/removal.

(1) Requires use of AC coupling capacitors at differential inputs and outputs.

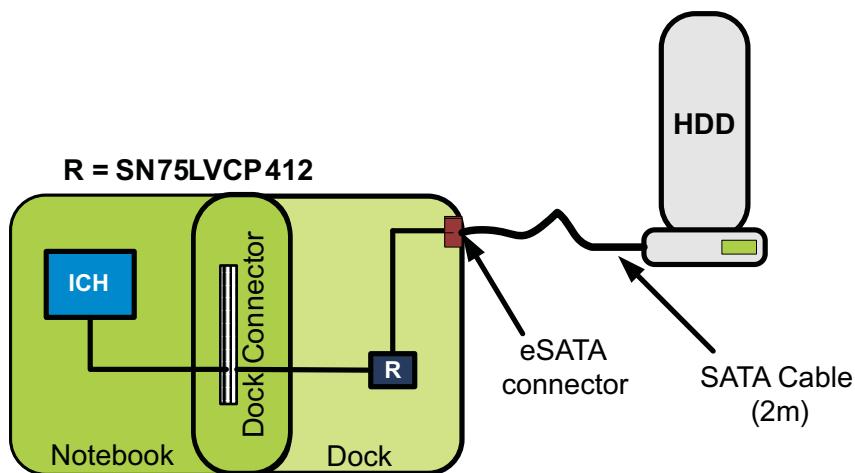
ORDERING INFORMATION⁽¹⁾

PART NUMBER	PART MARKING	PACKAGE
SN75LVCP412RTJR	LVCP412	20-Pin RTJ Reel (large)

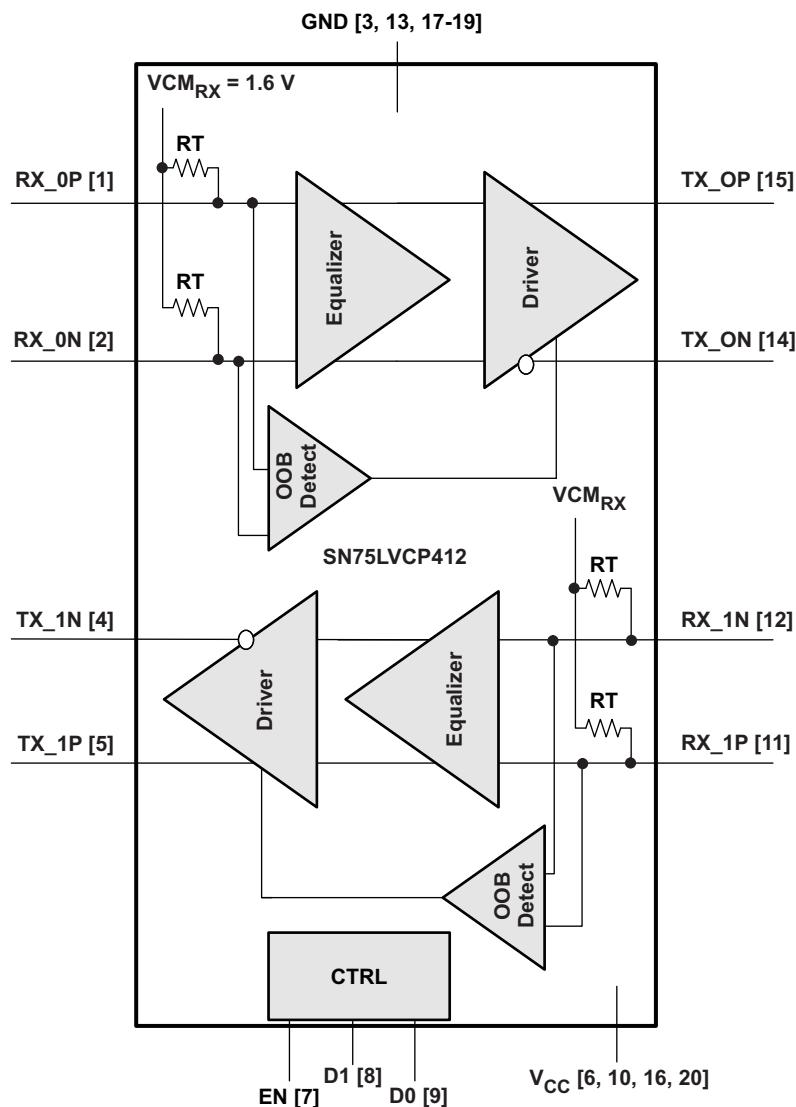
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.


TYPICAL APPLICATION

**In Notebook and Desktop
Motherboard**

In Notebook Dock

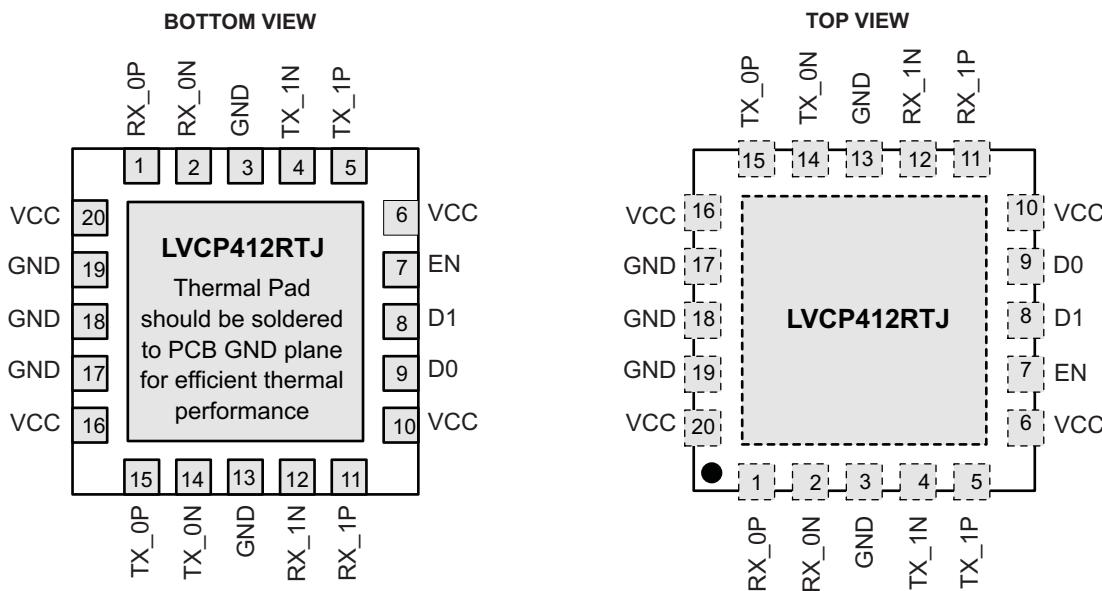
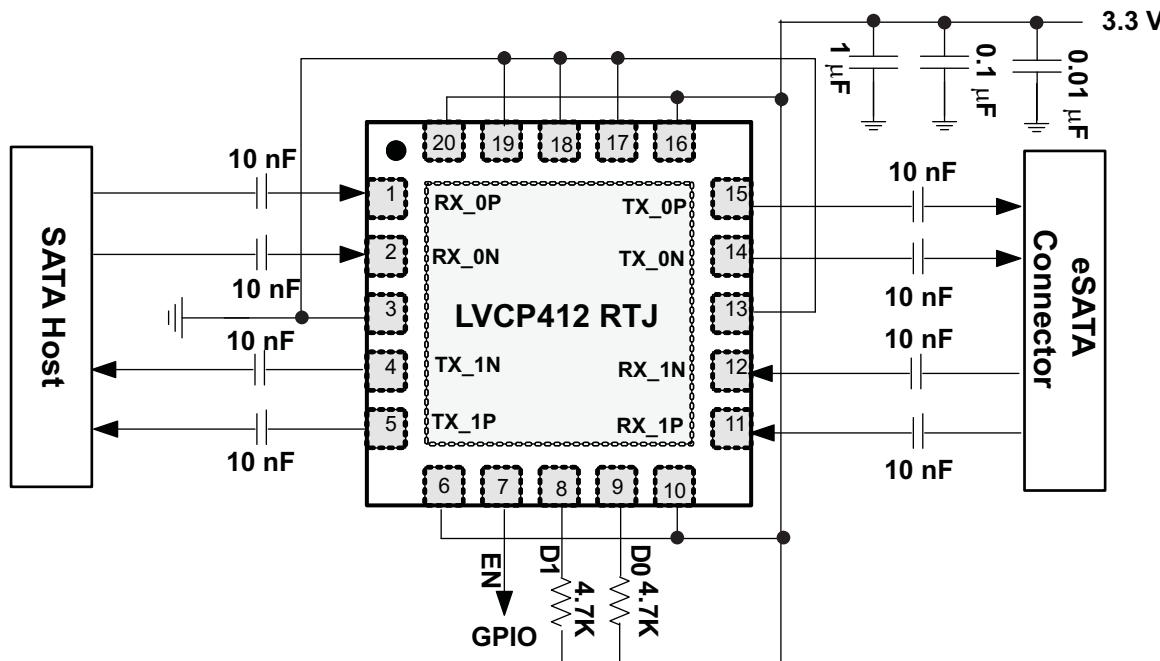


Figure 1. Data Flow Block Diagram

Table 1. Control Logic

EN	D0	D1	FUNCTION
0	X	X	Low power mode
1	0	0	Normal SATA output (default state); CH 0 and CH 1 → 0 dB
1	1	0	CH 0 → 2.5 dB pre-emphasis; CH 1 → 0 dB
1	0	1	CH 1 → 2.5 dB pre-emphasis; CH 0 → 0 dB
1	1	1	CH 0 and CH 1 → 2.5 dB pre-emphasis

PIN ASSIGNMENT


TERMINAL FUNCTIONS

PIN	NAME	DESCRIPTION	PIN	NAME	DESCRIPTION
1	RX_OP	Input 0, non-inverting	11	RX_1P	Input 1, non-inverting
2	RX_ON	Input 0, inverting	12	RX_1N	Input 1, inverting
3	GND	Ground	13	GND	Ground
4	TX_1N	Output 1, inverting	14	TX_0N	Output 0, inverting
5	TX_1P	Output 1, non-inverting	15	TX_0P	Output 0, non-inverting
6	VCC	Power	16	VCC	Power
7	EN ⁽¹⁾	Enable	17	GND	Ground
8	D1 ⁽²⁾	Pre-emphasis_1	18	GND	Ground
9	D0 ⁽²⁾	Pre-emphasis_0	19	GND	Ground
10	VCC	Power	20	VCC	Power

(1) EN tied to VCC via internal PU resistor

(2) D0 and D1 are tied to GND via internal PD resistor

TYPICAL DEVICE IMPLEMENTATION

Note:

- 1) Place supply caps close to device pin
- 2) EN can be left open or tied to supply when no external control is implemented
- 3) Output pre-emphasis (D1, D0) is shown enabled. Setting will depend on device placement relative to eSATA connector

DETAILED DESCRIPTION

INPUT EQUALIZATION

Each differential input of the SN75LVCP412 has 7 dB of fixed equalization in its front stage. The equalization amplifies high frequency signals to correct for loss from the transmission channel. The input equalizer is designed to recover a signal even when no eye is present at the receiver and effectively supports FR4 trace at the input anywhere from <4 inches to 20 inches or <10 cm to >50 cm.

OUTPUT PRE-EMPHASIS

The SN75LVCP412 provides single step pre-emphasis from 0 dB to 2.5 dB at each of its differential outputs. Pre-emphasis is controlled independently for each channel and is set by the control pins D0 and D1 as shown in [Table 1](#). The pre-emphasis duration is 0.4 UI or 133 ps (typ) at SATA 3-Gbps speed.

LOW POWER MODE

Two low power modes are supported by the SN75LVCP412:

- Sleep Mode (triggered by EN pin, EN = 0V)
 - Low power mode is controlled by enable (EN) pin. In its default state this pin is internally pulled high. Pulling this pin LOW will put the device in sleep mode within 2μs (max). In this mode all active components of the device are driven to their quiescent level and differential outputs are driven to Hi-Z (open). Max power dissipation in this mode is 5 mW. Exiting from this mode to normal operation requires a maximum latency of 20 μs.
- Auto Low Power Mode (triggered when a given channel is in electrical idle state; EN = V_{CC})
 - The device enters and exits low power mode by actively monitoring input signal (V_{IDP-p}) level on each of its channel independently. When input signal on either or both channel is in the electrical idle state, i.e. V_{IDP-p} <50 mV and stays in this state for ≥3 μS the associated channel(s) enters into the low power state. In this

state, output of the associated channel(s) is driven to VCM and device selectively shuts off some circuitry to lower power by up to 20% of its normal operating power. Exit time from auto low power mode is less than 50 ns.

- As an example, if under normal operating conditions device is consuming typical power of 200 mW. When device enters this mode, i.e. condition for auto-low power mode is met, power consumption can drop down to 160 mW. The device enters normal operation within 50 ns of signal activity detection.

OUT-OF-BAND (OOB) SUPPORT

The squelch detector circuit within the device enables full detection of OOB signaling as specified in SATA specification 2.6. Differential signal amplitude at the receiver input of 50 mV_{p-p} or less is not detected as an activity and hence is not passed to the output. Differential signal amplitude of 150 mV_{p-p} or more is detected as an activity and therefore passed to the output indicating activity. Squelch circuit on/off time is 5 ns max. While in squelch mode outputs are held to VCM.

DEVICE POWER

The SN75LVCL412 is designed to operate from a single 3.3-V supply. Always practice proper power supply sequencing procedures. Apply V_{CC} first before any input signals are applied to the device. The power down sequence is in reverse order.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		VALUE	UNIT
Supply voltage range ⁽²⁾	V _{CC}	–0.5 to 6	V
Voltage range	Differential I/O	–0.5 to 4	V
	Control I/O	–0.5 to V _{CC} + 0.5	V
Electrostatic discharge	Human body model ⁽³⁾	±8000	V
	Charged-device model ⁽⁴⁾	±1000	V
	Machine model ⁽⁵⁾	±200	V
Continuous power dissipation		See Dissipation Rating Table	

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential voltages, are with respect to network ground terminal.

(3) Tested in accordance with JEDEC Standard 22, Test Method A114-B.

(4) Tested in accordance with JEDEC Standard 22, Test Method C101-A.

(5) Tested in accordance with JEDEC Standard 22, Test Method A115-A.

DISSIPATION RATINGS

PACKAGE	PCB JEDEC STANDARD	T _A ≤ 25°C	DERATING FACTOR ⁽¹⁾ ABOVE T _A = 25°C	T _A = 85°C POWER RATING
20-pin QFN (RTJ)	Low-K	1176 mW	11.76 mW/°C	470 mW
	High-K	2631 mW	26.3 mW/°C	1052 mW

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX ⁽¹⁾	UNIT
R _{θJB} Junction-to-board thermal resistance			10		°C/W
R _{θJC} Junction-to-case thermal resistance			60		°C/W
R _{θJP} Junction-to-pad thermal resistance			15.2		°C/W

(1) The maximum rating is simulated under 3.6-V V_{CC}.

THERMAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX ⁽¹⁾	UNIT
P _D	Device power dissipation, active mode EN = 3.3 V, K28.5 pattern at 3 Gbps, V _{ID} = 700 mV _{p-p} , V _{CC} = 3.6 V			300	mW
P _{SD}	Device power dissipation, sleep mode EN = 0 V, K28.5 pattern at 3 Gbps, V _{ID} = 700 mV _{p-p} , V _{CC} = 3.6 V			5	mW

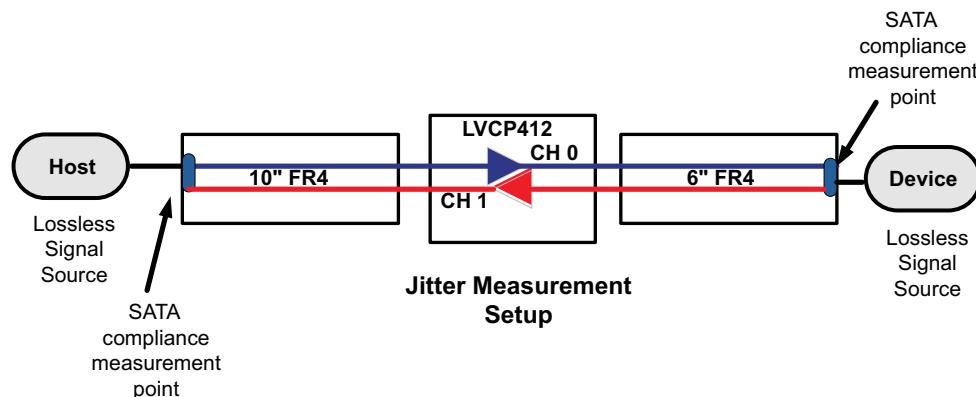
RECOMMENDED OPERATING CONDITIONS

with typical values measured at V_{CC} = 3.3 V, T_A = 25°C; all temperature limits are assured by design

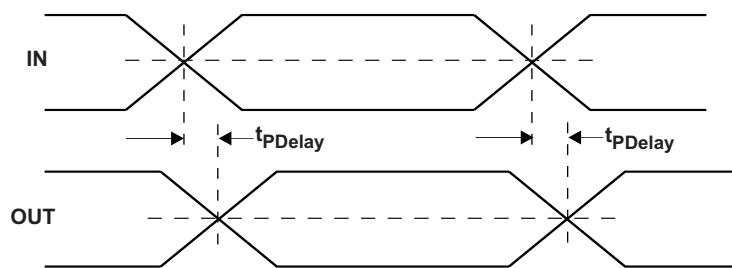
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{CC}	Supply voltage	3	3.3	3.6	V
C _{COUPLING}	Coupling capacitor		12		nF
T _A	Operating free-air temperature	0	85		°C

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)


PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DEVICE PARAMETERS					
I _{CC}	Supply current, active mode EN = 3.3 V, K28.5 pattern at 3 Gbps, V _{ID} = 700 mV _{p-p} , V _{CC} = 3.3 V	55	70		mA
I _{CCSLEEP}	Shutdown current, sleep mode EN = 0V		1		mA
	Maximum data rate		3.0		Gbps
t _{PDelay}	Propagation delay Measured using K28.5 pattern, See Figure 2	320	400		ps
t _{ENB}	Device enable time ENB = L → H		20		μs
t _{DIS}	Device disable time ENB = H → L		2		μs
V _{OOB}	Input OOB threshold See Figure 3	50	150		mV _{p-p}
t _{OOB1}	OOB mode enter See Figure 3		3	5	ns
t _{OOB2}	OOB mode exit See Figure 3		3	5	ns
CONTROL LOGIC					
V _{IH}	High-level input voltage	1.4			V
V _{IL}	Low-level input voltage		0.5		V
V _{INHYS}	Input hysteresis	115			mV
I _{IH}	High-level input current		10		μA
I _{IL}	Low-level input current		10		μA
RECEIVER AC/DC					
Z _{DiffRX}	Differential input impedance	85	100	115	Ω
Z _{SERX}	Single-ended input impedance	40			Ω
V _{CMRX}	Common-mode voltage		1.6		V
RL _{DiffRX}	Differential mode return loss f = 150 MHz–300 MHz	18			dB
		14			
		10			
		8			
		3			
RL _{CMRX}	Common-mode return loss f = 150 MHz–300 MHz	5			dB
		5			
		2			
		1			
		1			

ELECTRICAL CHARACTERISTICS (continued)


over recommended operating conditions (unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS			
V_{DiffRX}	Differential input voltage PP	$f = 150 \text{ MHz} \text{--} 300 \text{ MHz}$	200	2000	mV/ppd			
IB_{RX}	Impedance balance	$f = 150 \text{ MHz} \text{--} 300 \text{ MHz}$	30		dB			
		$f = 300 \text{ MHz} \text{--} 600 \text{ MHz}$	30					
		$f = 600 \text{ MHz} \text{--} 1.2 \text{ GHz}$	20					
		$f = 1.2 \text{ GHz} \text{--} 2.4 \text{ GHz}$	10					
		$f = 2.4 \text{ GHz} \text{--} 3.0 \text{ GHz}$	4					
$T_{20-80RX}$	Rise/fall time	Rise times and fall times measured between 20% and 80% of the signal			ps			
T_{skewRX}	Differential skew	Difference between the single-ended mid-point of the RX+ signal rising/falling edge, and the single-ended mid-point of the RX- signal falling/rising edge			ps			
TRANSMITTER AC/DC								
Z_{DiffTX}	Pair differential Impedance		85	115	Ω			
Z_{SETX}	Single-ended input impedance		40		Ω			
	Output pre-emphasis	At 1.5 GHz when enabled		2.5	dB			
RL_{DiffTX}	Differential mode return loss	$f = 150 \text{ MHz} \text{--} 300 \text{ MHz}$	14		dB			
		$f = 300 \text{ MHz} \text{--} 600 \text{ MHz}$	8					
		$f = 600 \text{ MHz} \text{--} 1.2 \text{ GHz}$	6					
		$f = 1.2 \text{ GHz} \text{--} 2.4 \text{ GHz}$	6					
		$f = 2.4 \text{ GHz} \text{--} 3.0 \text{ GHz}$	3					
RL_{CMTX}	Common-mode return loss	$f = 150 \text{ MHz} \text{--} 300 \text{ MHz}$	5		dB			
		$f = 300 \text{ MHz} \text{--} 600 \text{ MHz}$	5					
		$f = 600 \text{ MHz} \text{--} 1.2 \text{ GHz}$	2					
		$f = 1.2 \text{ GHz} \text{--} 2.4 \text{ GHz}$	1					
		$f = 2.4 \text{ GHz} \text{--} 3.0 \text{ GHz}$	1					
IB_{TX}	Impedance balance	$f = 150 \text{ MHz} \text{--} 300 \text{ MHz}$	30		dB			
		$f = 300 \text{ MHz} \text{--} 600 \text{ MHz}$	20					
		$f = 600 \text{ MHz} \text{--} 1.2 \text{ GHz}$	10					
		$f = 1.2 \text{ GHz} \text{--} 2.4 \text{ GHz}$	10					
		$f = 2.4 \text{ GHz} \text{--} 3.0 \text{ GHz}$	4					
$Diff_{VppTX}$	Differential output voltage PP	$f = 1.5 \text{ GHz}$, $D0/D1 = 0$	400	525	600	mV/ppd		
$Diff_{VppTX_PE}$	Differential output voltage PP	$f = 1.5 \text{ GHz}$, $D0/D1 = 1$	600	700	800	mV/ppd		
t_{DE}	Pre-emphasis width	See Figure 4		0.4		UI		
V_{CMTX}	Common-mode voltage			1.97		V		
$T_{20-80TX}$	Rise/fall time	Rise times and fall times measured between 20% and 80% of the signal, $D1, D0 = 0 \text{ V}$			67	100	136	ps
T_{skewTX}	Differential skew	Difference between the single-ended mid-point of the TX+ signal rising/falling edge, and the single-ended mid-point of the TX- signal falling/rising edge, $D1, D0 = V_{CC}$					20	ps
TJ_{TX}	Total jitter ⁽¹⁾	UI = 333 ps, +K28.5 control character		0.2	0.3	UI_{p-p}		
DJ_{TX}	Deterministic jitter ⁽¹⁾	UI = 333 ps, +K28.5 control character		0.13	0.2	UI_{p-p}		
RJ_{TX}	Random jitter ⁽¹⁾	UI = 333 ps, +K28.7 control character		2.0	2.15	ps/rms		

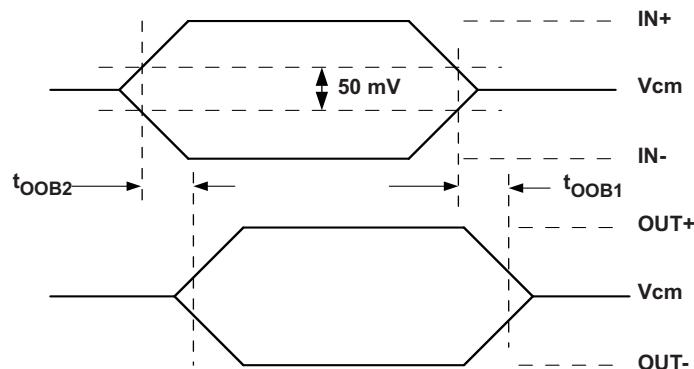

(1) $T_J = (14.1 \times RJ_{SD} + DJ)$ where RJ_{SD} is one standard deviation value of RJ Gaussian distribution. T_J measurement is at the SATA connector and includes jitter generated at the package connection on the printed circuit board, and at the board interconnect as shown in [Figure 2](#).

Figure 2. Jitter Measurement Test Condition

Figure 3. Propagation Delay Timing Diagram

Figure 4. OOB Enter and Exit Timing

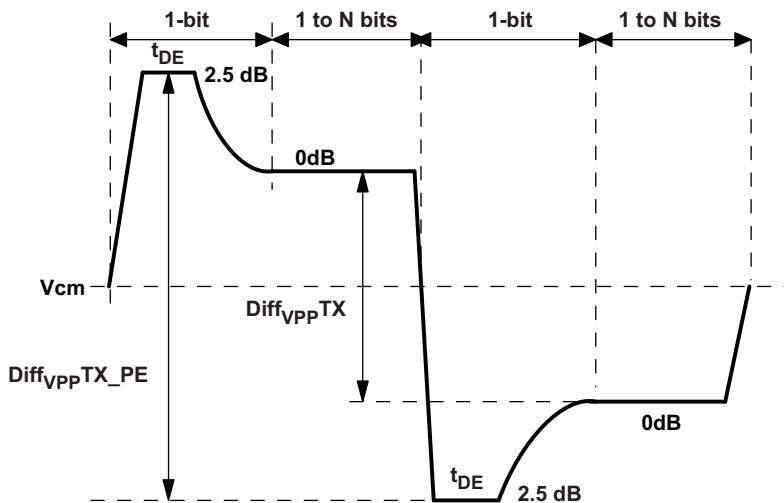
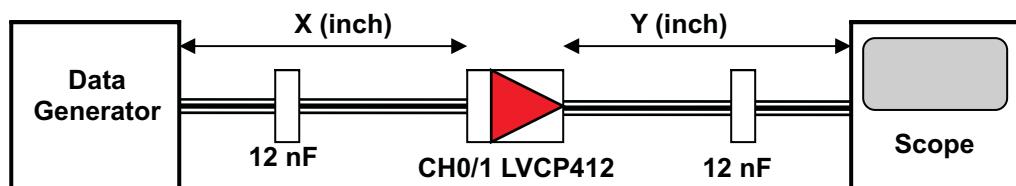
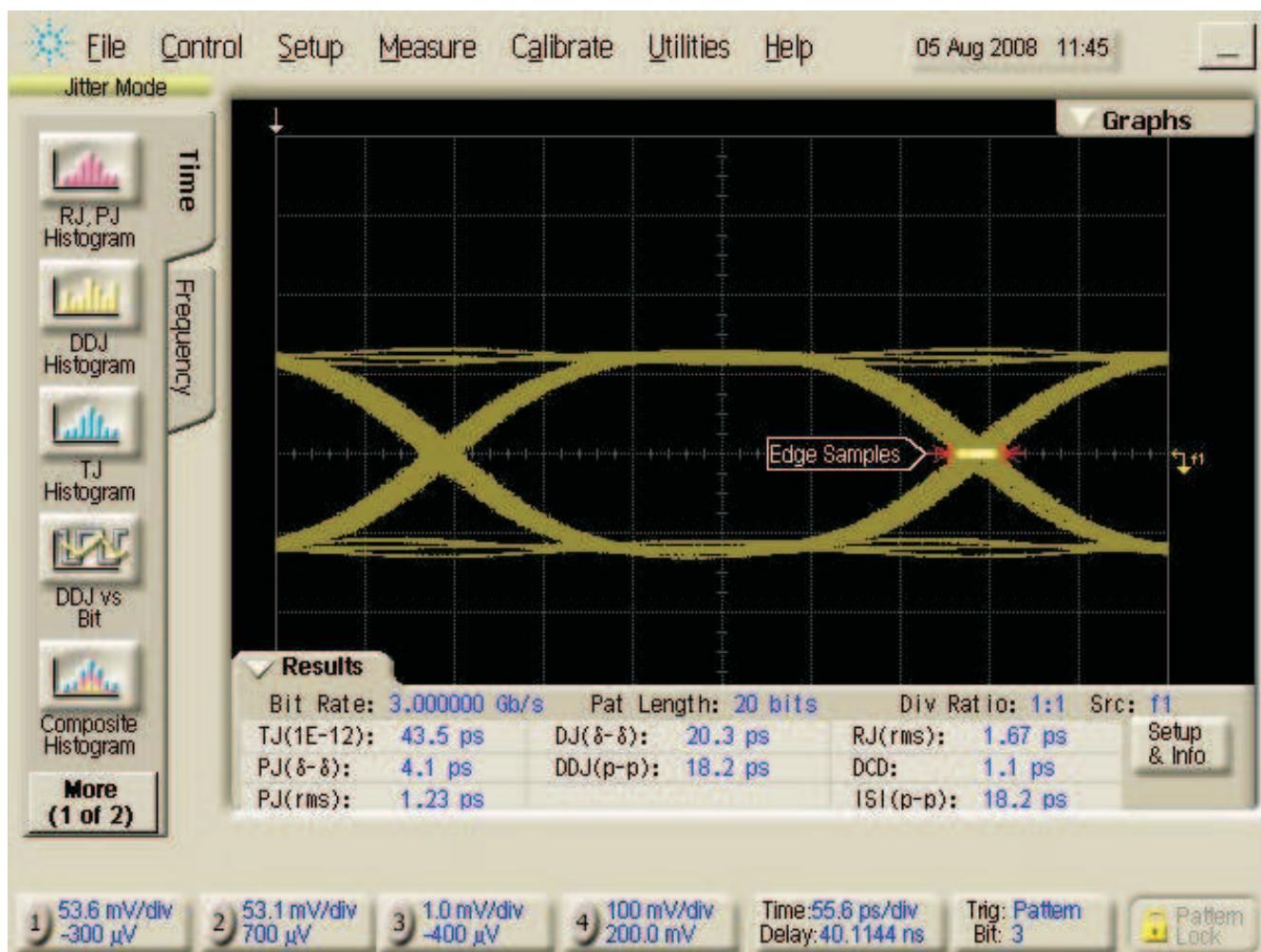


Figure 5. TX Differential Output with 2.5 dB Pre-Emphasis Step


BENCH TEST DATA

Differential Output Voltage – $\text{Diff}_{\text{VppTX}}$, 2 inches from Device Pin, $\text{V}_{\text{CC}} = 3.3 \text{ V}$, $\text{T}_A = 25^\circ\text{C}$, Pattern = K28.5, Bit Rate = 3 Gbps

PARAMETER	TEST CONDITIONS	CHANNEL	INPUT VID	DO/D1	MIN	MEAN	MAXIMUM
Diff _{VppTX}	$\text{V}_{\text{CC}} = 3.3 \text{ V}$, $\text{T}_A = 25^\circ\text{C}$, Pattern = K28.5, Bit rate = 3 Gbps	CH0	700 mV	0	524.87mV	524.87mV	525.72mV
		CH1	700 mV	0	515.68mV	516.72mV	518.85mV
Diff _{VppTXDE}		CH0	700 mV	1	665.07mV	666.48mV	668.07mV
		CH1	700 mV	1	656.32mV	658.34mV	660.40mV


EYE DIAGRAM

Eye Pattern Measurement Setup

Test Condition

- $\text{V}_{\text{CC}} = 3.3 \text{ V}$
- Temp = 25°C
- Rx input voltage = 700 mVp-p
- Input pattern K28.5± @3 Gbps
- D1/D0/ENB = V_{CC}
- Trace Width = 4 mil on PCB

Figure 6. Eye Pattern

X=5.7", Y =5.7" (Eye Height/Width)

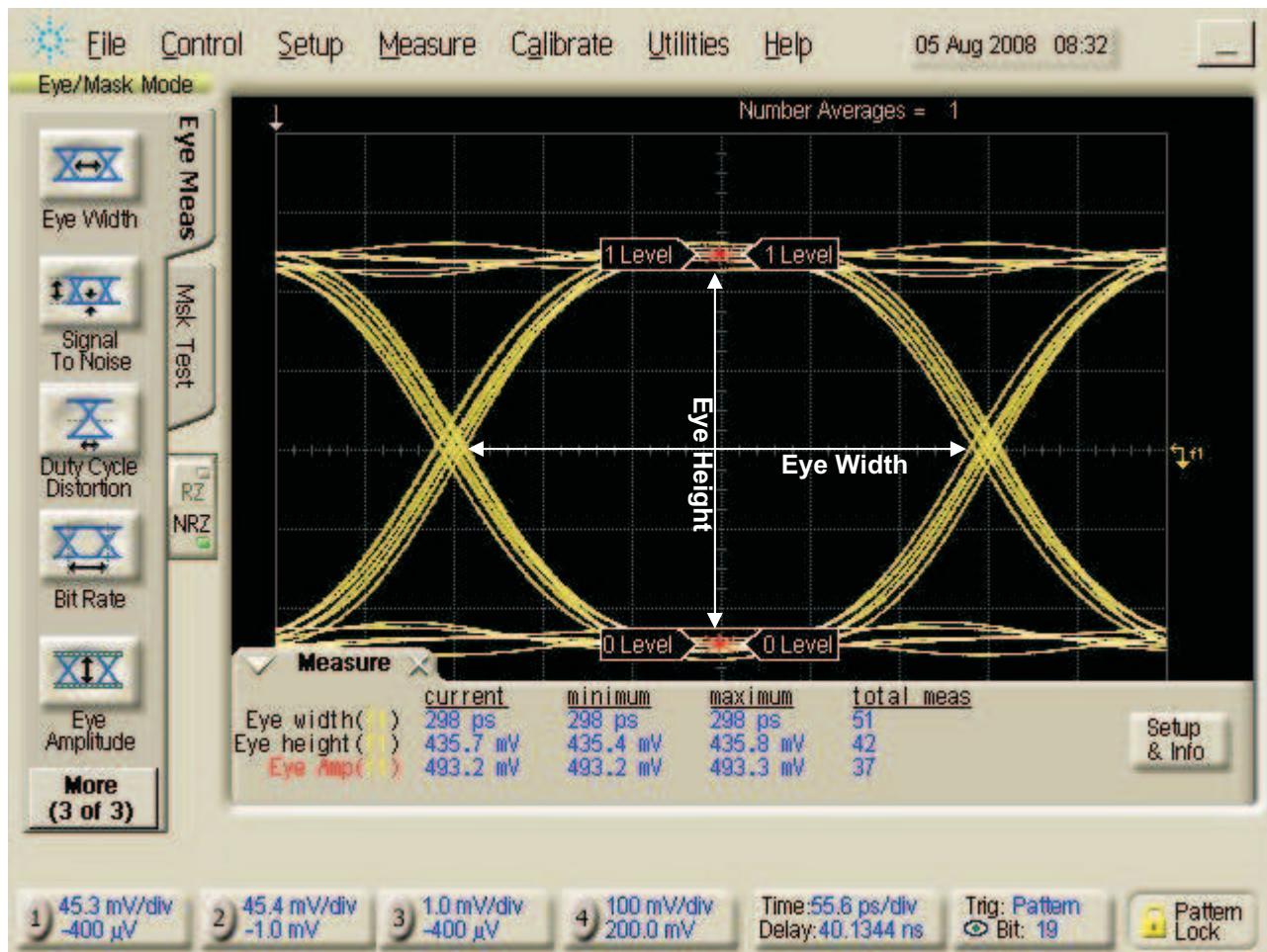
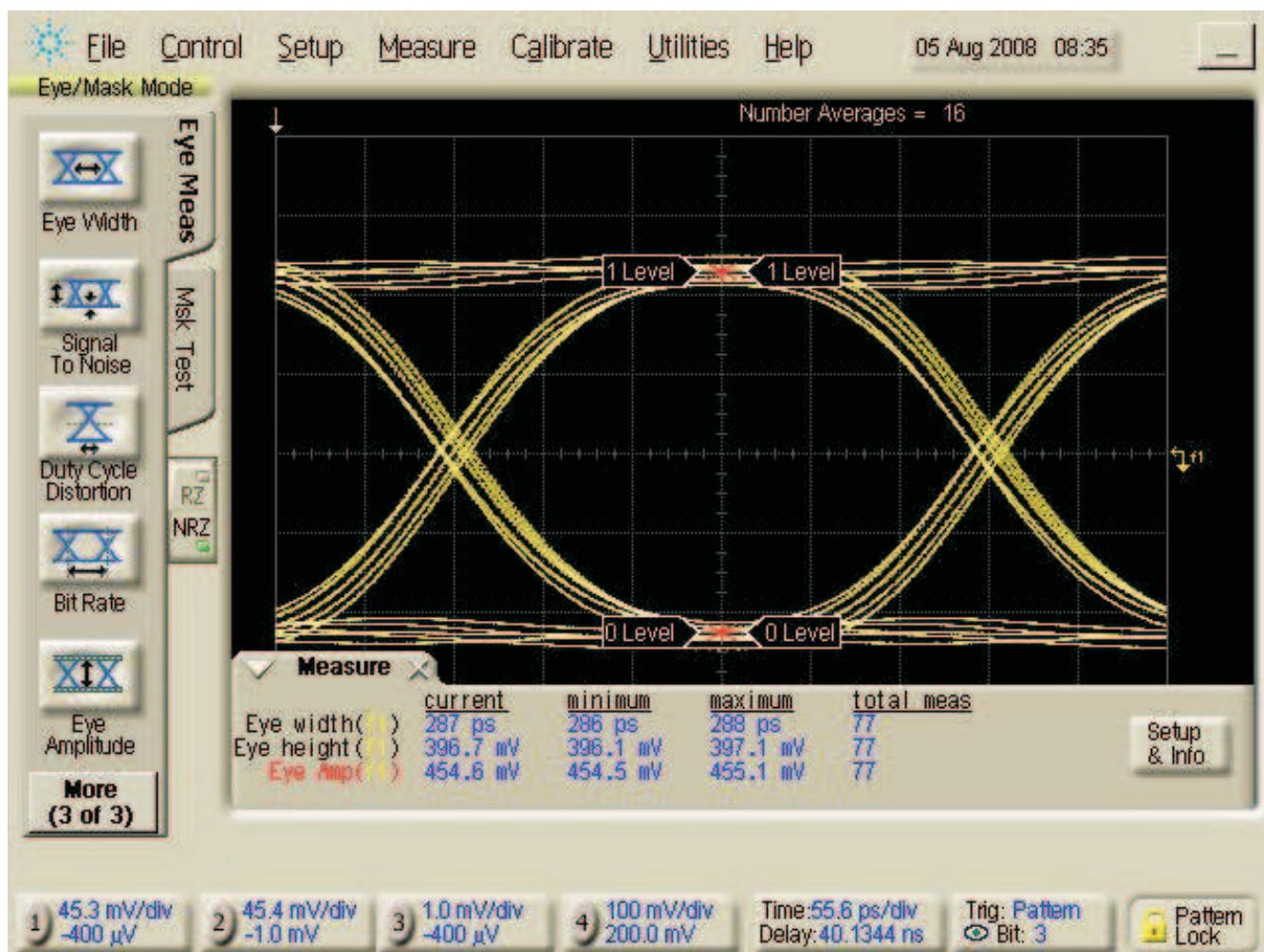



Figure 7. Eye Pattern

Figure 8. Eye Pattern

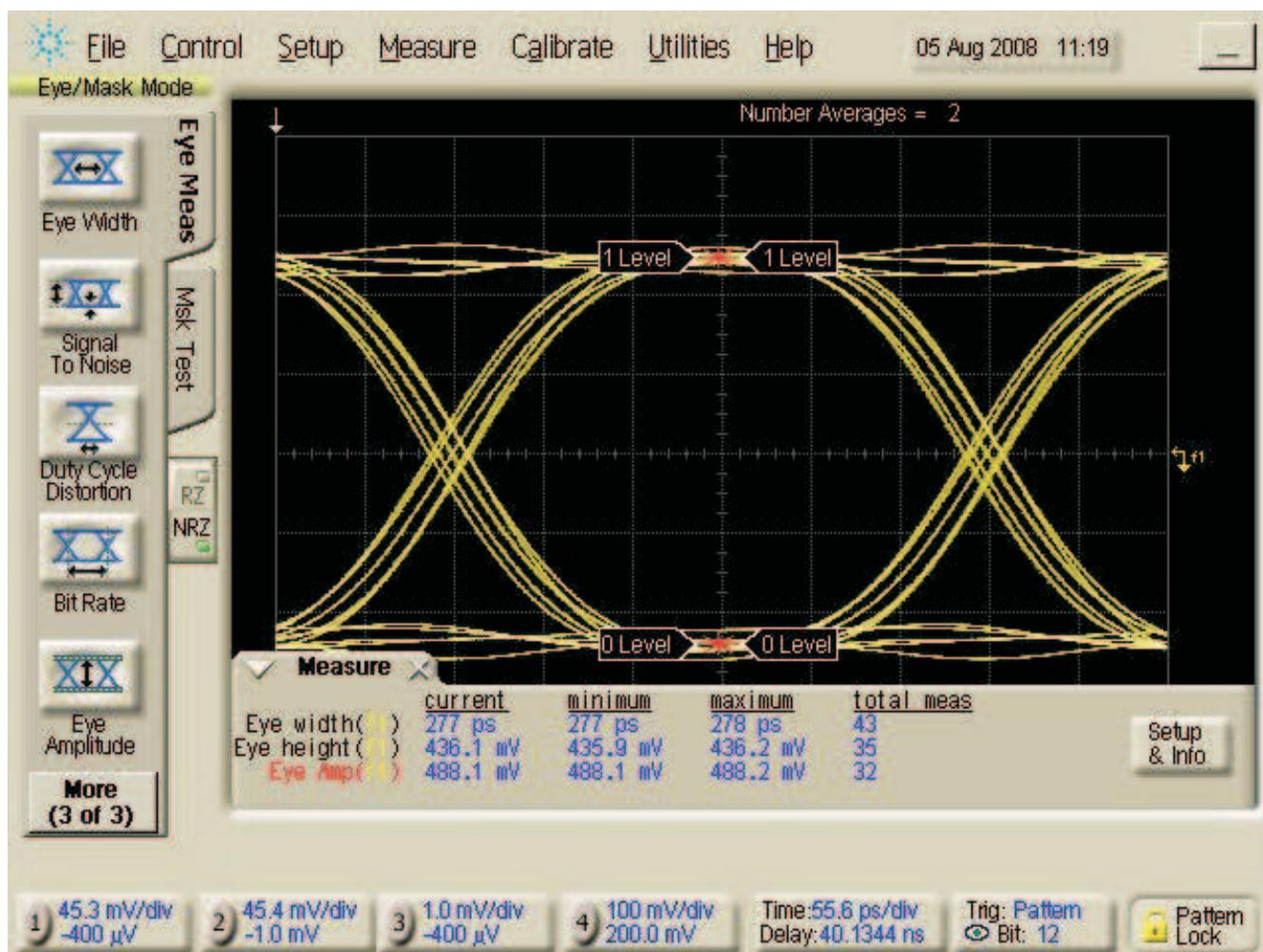


Figure 9. Eye Pattern

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
SN75LVCP412RTJR	Active	Production	QFN (RTJ) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	0 to 85	LVCP412
SN75LVCP412RTJR.B	Active	Production	QFN (RTJ) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	0 to 85	LVCP412
SN75LVCP412RTJT	Active	Production	QFN (RTJ) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	0 to 85	LVCP412
SN75LVCP412RTJT.B	Active	Production	QFN (RTJ) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	0 to 85	LVCP412
SN75LVCP412RTJTG4	Active	Production	QFN (RTJ) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	0 to 85	LVCP412
SN75LVCP412RTJTG4.B	Active	Production	QFN (RTJ) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	0 to 85	LVCP412

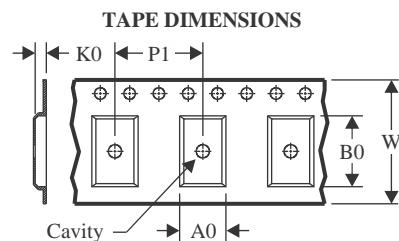
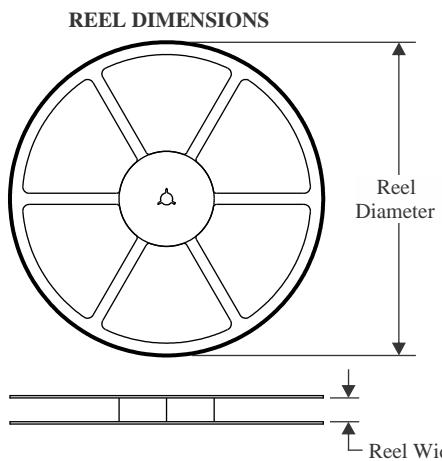
⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

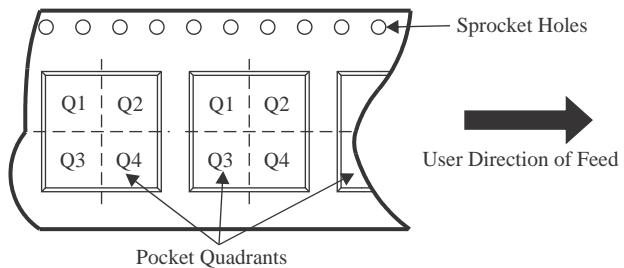
⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

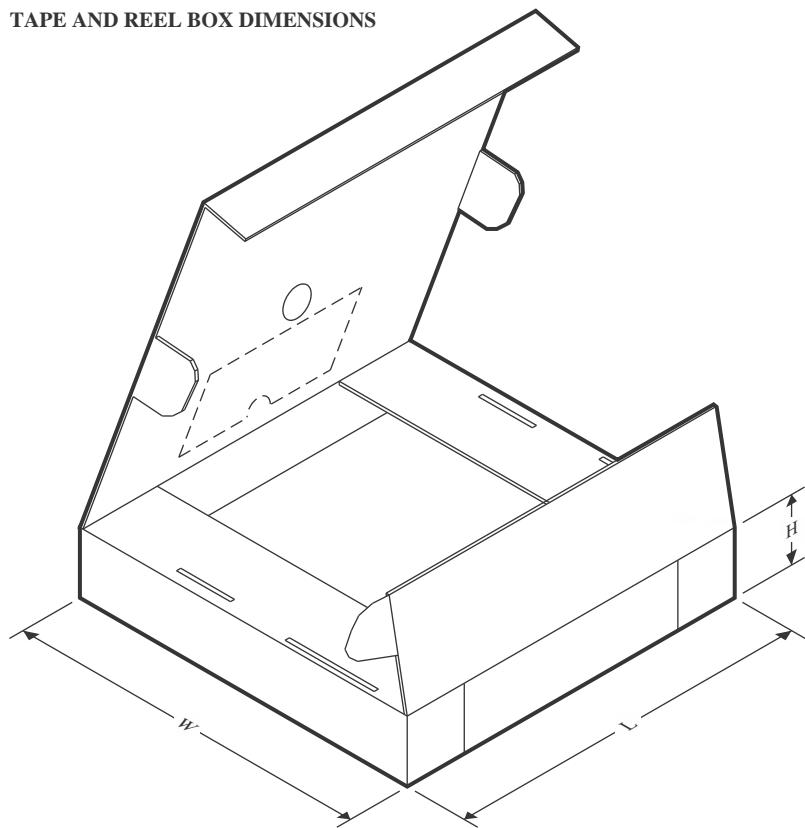
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.



⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

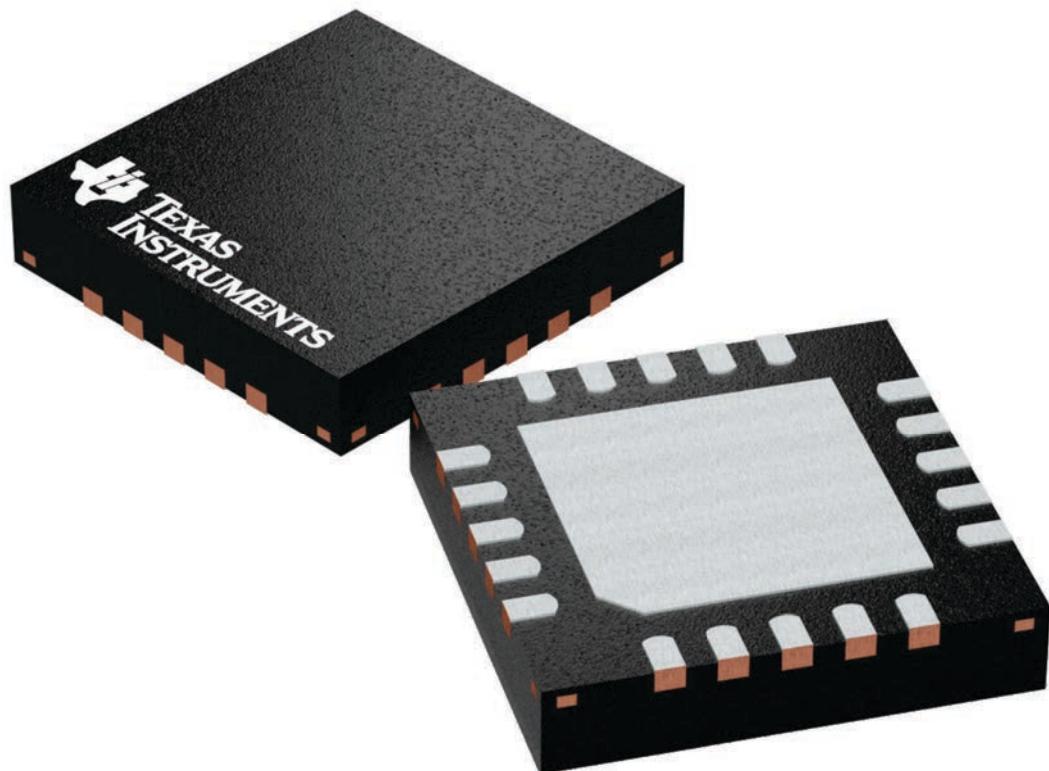
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75LVCP412RTJR	QFN	RTJ	20	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
SN75LVCP412RTJT	QFN	RTJ	20	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
SN75LVCP412RTJTG4	QFN	RTJ	20	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75LVCP412RTJR	QFN	RTJ	20	3000	346.0	346.0	33.0
SN75LVCP412RTJT	QFN	RTJ	20	250	210.0	185.0	35.0
SN75LVCP412RTJTG4	QFN	RTJ	20	250	210.0	185.0	35.0

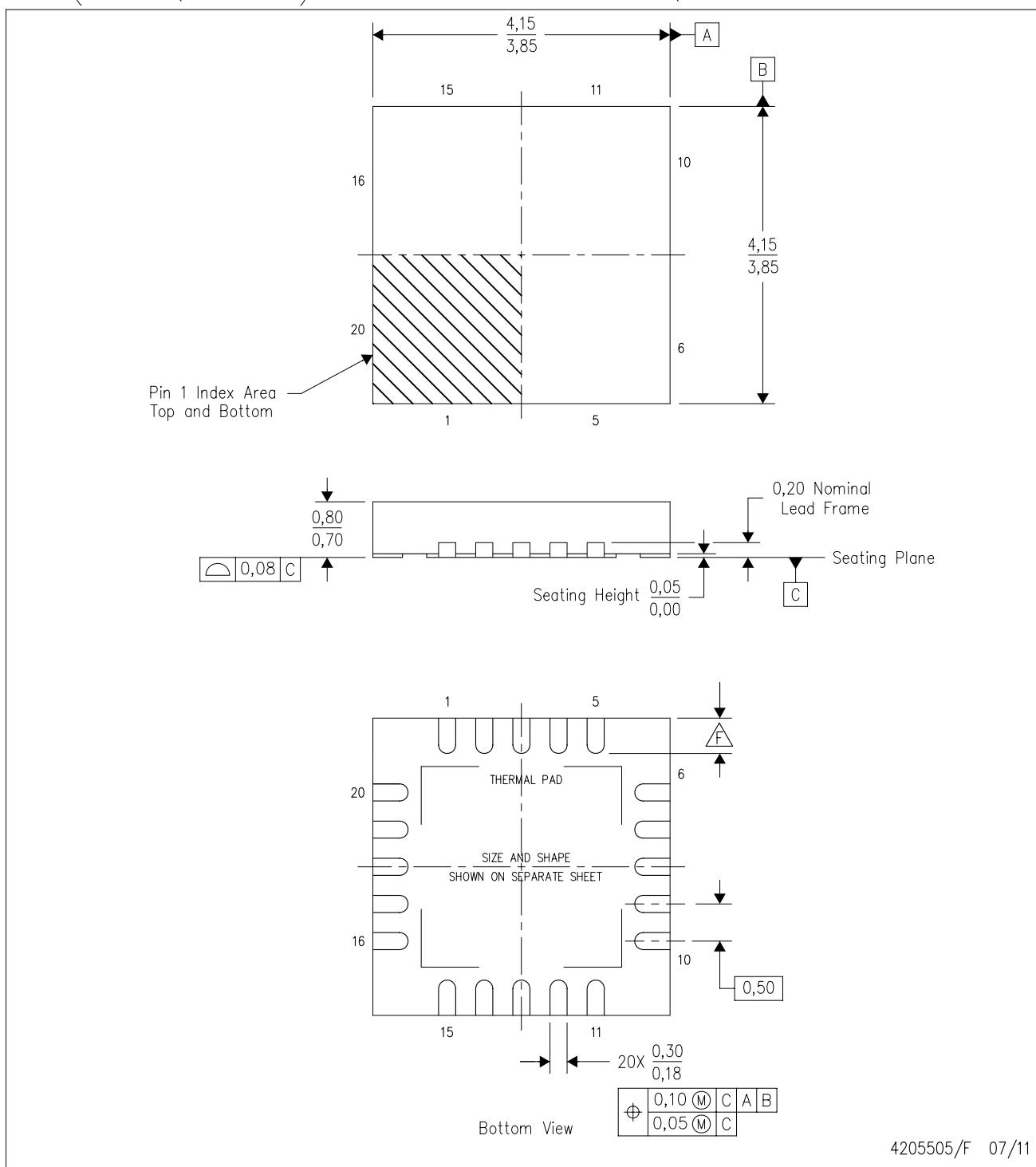
GENERIC PACKAGE VIEW


RTJ 20

WQFN - 0.8 mm max height

4 x 4, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4224842/A

RTJ (S-PWQFN-N20)

PLASTIC QUAD FLATPACK NO-LEAD

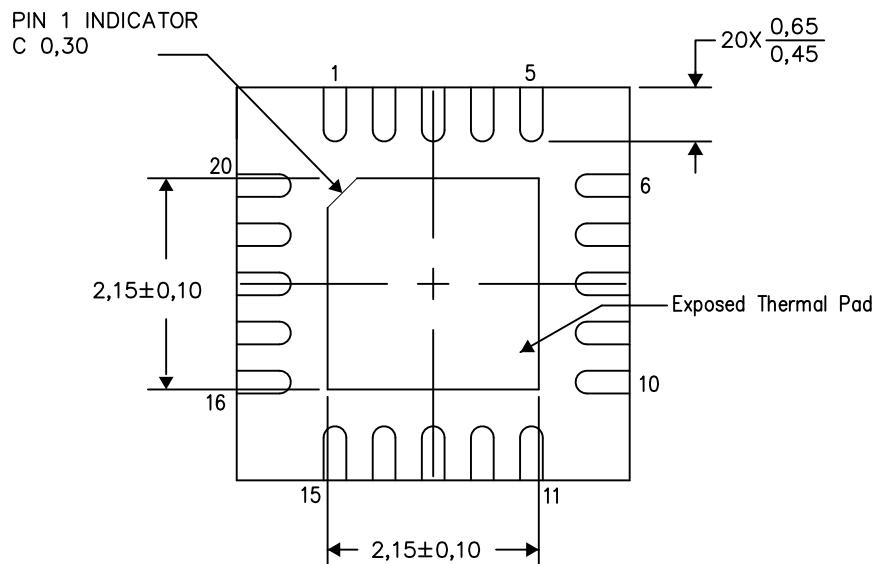
NOTES:

- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.
- This drawing is subject to change without notice.
- QFN (Quad Flatpack No-Lead) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

 Check thermal pad mechanical drawing in the product datasheet for nominal lead length dimensions.

THERMAL PAD MECHANICAL DATA

RTJ (S-PWQFN-N20)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4206256-3/V 05/15

NOTE: All linear dimensions are in millimeters

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated