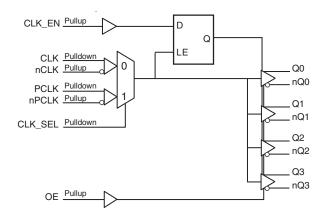


LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER

ICS85431

General Description

The ICS8543I is a low skew, high performance 1-to-4 Differential-to-LVDS Clock Fanout Buffer and a member of the HiPerClockS[™] family of High Performance Clock Solutions from IDT. Utilizing Low Voltage Differential Signaling (LVDS) the ICS8543I


provides a low power, low noise, solution for distributing clock signals over controlled impedances of $100\Omega.$ The ICS8543I has two selectable clock inputs. The CLK, nCLK pair can accept most standard differential input levels. The PCLK, nPCLK pair can accept LVPECL, CML, or SSTL input levels. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin.

Guaranteed output and part-to-part skew characteristics make the ICS8543I ideal for those applications demanding well defined performance and repeatability.

Features

- Four differential LVDS output pairs
- Selectable differential CLK/nCLK or LVPECL clock inputs
- CLK/nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- PCLK/nPCLK pair can accept the following differential input levels: LVPECL, CML, SSTL
- Maximum output frequency: 650MHz
- Translates any single-ended input signals to LVDS levels with resistor bias on nCLK input
- Additive phase Jitter, RMS: 0.164ps (typical)
- Output skew: 40ps (maximum)
- Part-to-part skew: 600ps (maximum)
- Propagation delay: 2.6ns (maximum)
- Full 3.3Vsupply mode
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Block Diagram

Pin Assignment

GND	1	20	ΠQ0
CLK EN	2	19	Figo.
	I ⁻		_
CLK_SEL□	3	18	
CLK□	4	17	□Q1
nCLK□	5	16	□nQ1
PCLK□	6	15	□ Q2
nPCLK□	7	14	nQ2
OE□	8	13	□GND
GND□	9	12	□ Q3
$V_{DD}\square$	10	11	□nQ3

ICS8543I

20-Lead TSSOP 6.5mm x 4.4mm x 0.925mm package body G Package Top View

Table 1. Pin Descriptions

Number	Name	Т	уре	Description
1, 9, 13	GND	Power		Power supply ground.
2	CLK_EN	Input	Pullup	Synchronizing clock enable. When HIGH, clock outputs follows clock input. When LOW, Qx outputs are forced low, nQx outputs are forced high. LVCMOS / LVTTL interface levels.
3	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects PCLK/nPCLK inputs. When LOW, selects CLK/nCLK inputs. LVCMOS / LVTTL interface levels.
4	CLK	Input	Pulldown	Non-inverting differential clock input.
5	nCLK	Input	Pullup	Inverting differential clock input.
6	PCLK	Input	Pulldown	Non-inverting differential LVPECL clock input.
7	nPCLK	Input	Pullup	Inverting differential LVPECL clock input.
8	OE	Input	Pullup	Output enable. Controls enabling and disabling of outputs Q0/nQ0 through Q3/nQ3. LVCMOS/LVTTL interface levels.
10, 18	V_{DD}	Power		Positive supply pins.
11, 12	nQ3, Q3	Output		Differential output pair. LVDS interface levels.
14, 15	nQ2, Q2	Output		Differential output pair. LVDS interface levels.
16, 17	nQ1, Q1	Output		Differential output pair. LVDS interface levels.
19, 20	nQ0, Q0	Output		Differential output pair. LVDS interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Tables

Table 3A. Control Input Function Table

	Inp	outs		Outputs		
OE	OE CLK_EN CLK_SEL Se			Q0:Q3	nQ0:nQ3	
0	X	Х		Hi-Z	Hi-Z	
1	0	0	CLK/nCLK	Disabled; Low	Disabled; High	
1	0	1	PCLK/nPCLK	Disabled; Low	Disabled; High	
1	1	0	CLK/nCLK	Enabled	Enabled	
1	1	1	PCLK/nPCLK	Enabled	Enabled	

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1. In the active mode, the state of the outputs are a function of the CLK/nCLK and PCLK/nPCLK inputs as described in Table 3B.

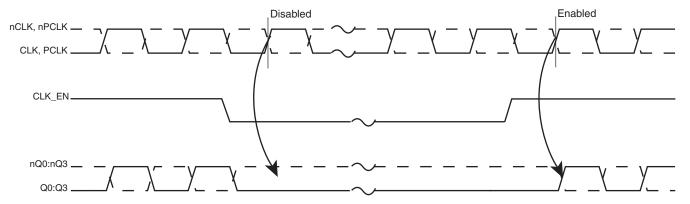


Figure 1. CLK_EN Timing Diagram

Table 3B. Clock Input Function Table

Inj	Inputs		tputs			
CLK or PCLK	nCLK or nPCLK	CLK or nPCLK Q[0:3] nQ[0:3]		Input to Output Mode	Polarity	
0	1	LOW	HIGH	Differential to Differential	Non-Inverting	
1	0	HIGH	LOW	Differential to Differential	Non-Inverting	
0	Biased; NOTE 1	LOW	HIGH	Single-Ended to Differential	Non-Inverting	
1	Biased; NOTE 1	HIGH	LOW	Single-Ended to Differential	Non-Inverting	
Biased; NOTE 1	0	HIGH	LOW	Single-Ended to Differential	Inverting	
Biased; NOTE 1	1	LOW	HIGH	Single-Ended to Differential	Inverting	

NOTE 1: Please refer to the Application Information section, Wiring the Differential Input to Accept Single-Ended Levels.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, I _O Continuos Current Surge Current	10mA 15mA
Package Thermal Impedance, θ_{JA}	73.2°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				50	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	V
V_{IL}	Input Low Voltage			-0.3		0.8	V
	Input High Current	OE, CLK_EN	$V_{DD} = V_{IN} = 3.465V$			5	μΑ
Iн	input riigii Current	CLK_SEL	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
	Input Low Current	OE, CLK_EN	V _{DD} = 3.465V, V _{IN} = 0V	-150			μΑ
'IL	Input Low Current	CLK_SEL	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μΑ

Table 4C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	CLK	$V_{DD} = V_{IN} = 3.465V$			150	μA
I'IH	input riigii Current	nCLK	$V_{DD} = V_{IN} = 3.465V$			5	μA
	Input Low Current	CLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μA
IIL.	Input Low Current	nCLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-150			μA
V _{PP}	Peak-to-Peak Voltag	e; NOTE 1		0.15		1.3	٧
V _{CMR}	Common Mode Input NOTE 1, 2	t Voltage;		0.5		V _{DD} – 0.85	V

NOTE 1: V_{IL} should not be less than -0.3V. NOTE 2: Common mode input voltage is defined as V_{IH} .

Table 4D. LVPECL DC Characteristics, $V_{DD}=3.3V\pm5\%,\,T_{A}=-40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	PCLK	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
l IH	Input riigii Current	nPCLK	$V_{DD} = V_{IN} = 3.465V$			5	μΑ
	la a de la constant	PCLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μΑ
'IL	Input Low Current	nPCLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-150			μΑ
V _{PP}	Peak-to-Peak Voltag	e; NOTE 1		0.3		1	V
V _{CMR}	Common Mode Inpu NOTE 1, 2	t Voltage;		1.5		V _{DD}	٧

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as V_{IH} .

Table 4E. LVDS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage		200	280	360	mV
ΔV_{OD}	V _{OD} Magnitude Change			0	40	mV
V _{OS}	Offset Voltage		1.125	1.25	1.375	V
ΔV _{OS}	V _{OS} Magnitude Change			5	25	mV
l _{Oz}	High Impedance Leakage		-10		+10	μΑ
I _{OFF}	Power Off Leakage		-20	±1	+20	μΑ
I _{OSD}	Differential Output Short Circuit Current			-3.5	-5	mA
Ios	Output Short Circuit Current			-3.5	-5	mA
V _{OH}	Output Voltage High			1.34	1.6	V
V _{OL}	Output Voltage Low		0.9	1.06		V

AC Electrical Characteristics

Table 5. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Maximum Output Freque	ncy				650	MHz
<i>t</i> jit	Buffer Additive Phase Jitt refer to Additive Phase Ji		153.6MHz, Integration Range: 12kHz – 20MHz		0.164		ps
t _{PD}	Propagation Delay; NOTE	 1	<i>f</i> ≤ 650MHz	1.5		2.6	ns
tsk(o)	Output Skew; NOTE 2, 4					40	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4					600	ps
t _R / t _F	Output Rise/Fall Time		20% to 80% @ 50MHz	150		450	ps
odc	Output Duty Cycle	odc		45	50	55	%

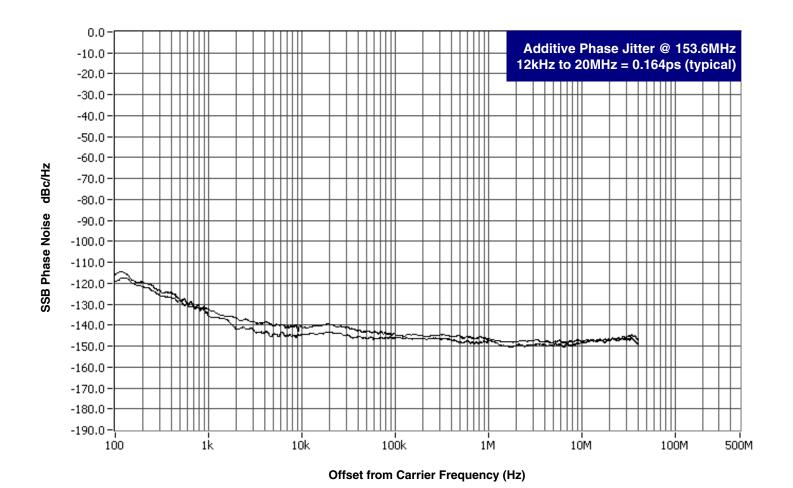
All parameters measured at 500MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at the differential output cross points.

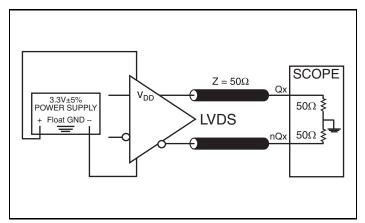
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions.

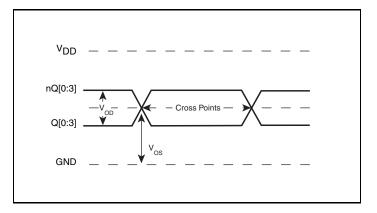

Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

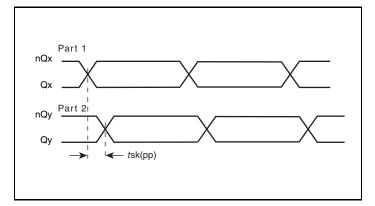
Additive Phase Jitter

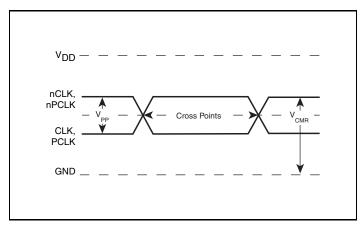
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band

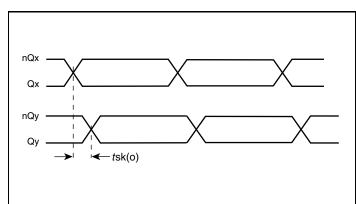

to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

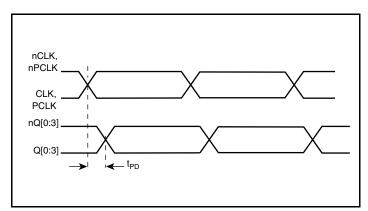

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the

device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

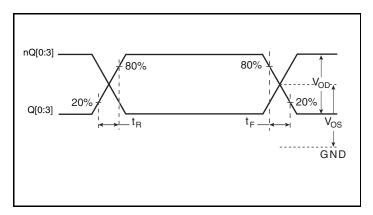

Parameter Measurement Information

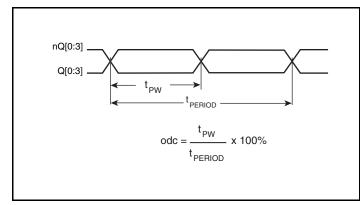

3.3V LVDS Output Load AC Test Circuit


Differential Output Level


Part-to-Part Skew

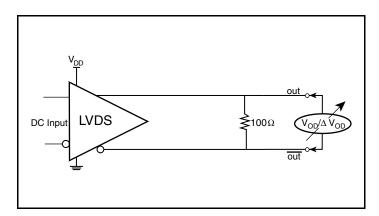
Differential Input Level

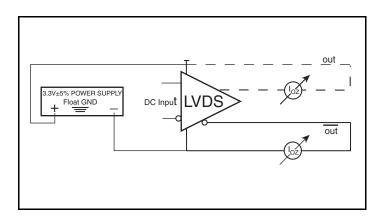



Output Skew

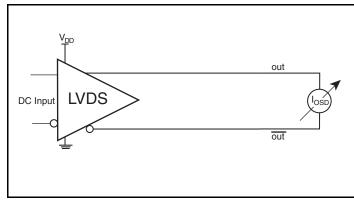
Propagation Delay

Parameter Measurement Information, continued

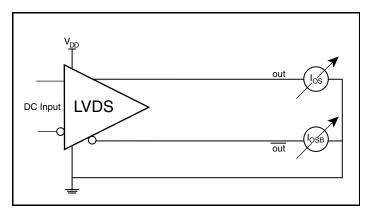


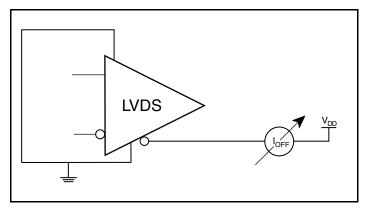

Output Rise/Fall Time

DC Input LVDS $\frac{50\Omega}{\text{out}} \sim \frac{50\Omega}{\text{out}}$


Output Duty Cycle/Pulse Width/Period

Offset Voltage Setup


Differential Output Voltage Setup


High Impedance Leakage Current Setup

Differential Output Short Circuit Setup

Parameter Measurement Information, continued

Power Off Leakage Setup

Application Information

Wiring the Differential Input to Accept Single Ended Levels

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and R2/R1 = 0.609.

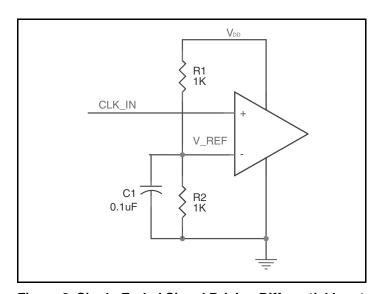


Figure 2. Single-Ended Signal Driving Differential Input

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. Figures 3A to 3F show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver

component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

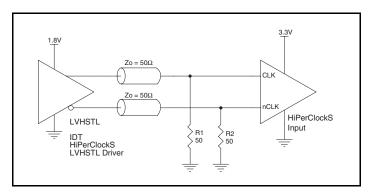


Figure 3A. HiPerClockS CLK/nCLK Input
Driven by an IDT Open Emitter
HiPerClockS LVHSTL Driver

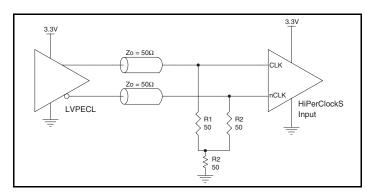


Figure 3B. HiPerClockS CLK/nCLK Input
Driven by a 3.3V LVPECL Driver

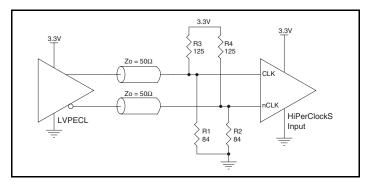


Figure 3C. HiPerClockS CLK/nCLK Input
Driven by a 3.3V LVPECL Driver

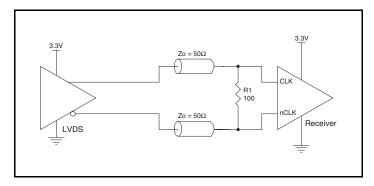


Figure 3D. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVDS Driver

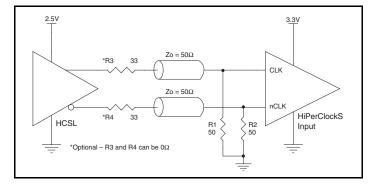


Figure 3E. HiPerClockS CLK/nCLK Input Driven by a 3.3V HCSL Driver

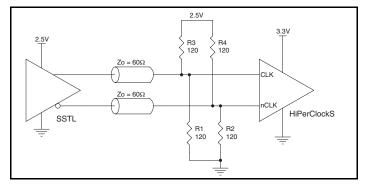


Figure 3F. HiPerClockS CLK/nCLK Input Driven by a 2.5V SSTL Driver

LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. *Figures 4A to 4F* show interface examples for the HiPerClockS PCLK/nPCLK input driven by the most common

driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

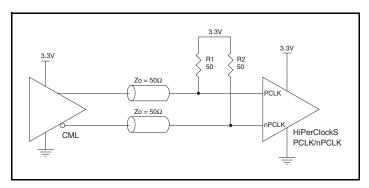


Figure 4A. HiPerClockS PCLK/nPCLK Input Driven by a CML Driver

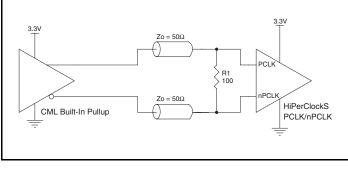


Figure 4B. HiPerClockS PCLK/nPCLK Input
Driven by a Built-In Pullup CML Driver

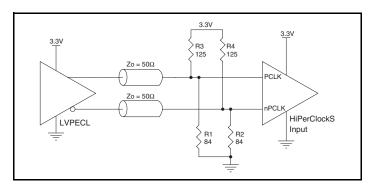


Figure 4C. HiPerClockS PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver

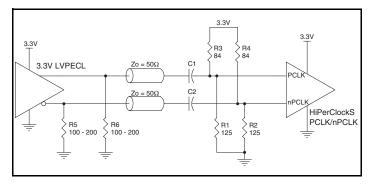


Figure 4D. HiPerClockS PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver with AC Couple

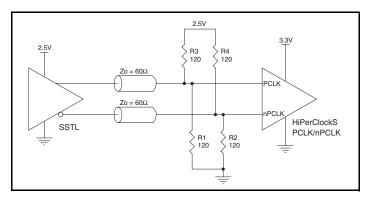


Figure 4E. HiPerClockS PCLK/nPCLK Input Driven by an SSTL Driver

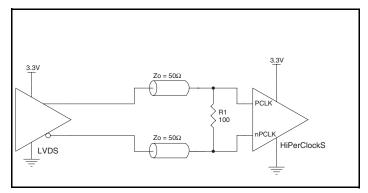


Figure 4F. HiPerClockS PCLK/nPCLK Input Driven by a 3.3V LVDS Driver

Recommendations for Unused Input and Output Pins

Inputs:

CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

PCLK/nPCLK Inputs

For applications not requiring the use of the differential input, both PCLK and nPCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from PCLK to ground.

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100 Ω across. If they are left floating, there should be no trace attached.

3.3V LVDS Driver Termination

A general LVDS interface is shown in Figure 5. In a 100Ω differential transmission line environment, LVDS drivers require a matched load termination of 100Ω across near the receiver input.

For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.

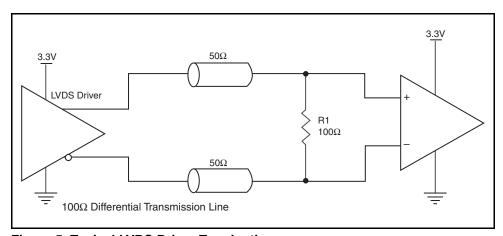


Figure 5. Typical LVDS Driver Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8543I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8543I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

Power (core)_{MAX} = V_{DD_MAX} * I_{DD_MAX} = 3.465V * 50mA = 173.25mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 73.2°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.173\text{W} * 73.2^{\circ}\text{C/W} = 97.7^{\circ}\text{C}$. This is well below the limit of 125°C .

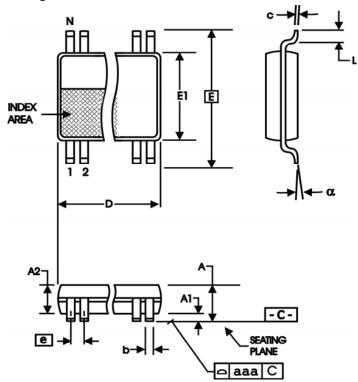
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 6. Thermal Resitance θ_{JA} for 20 Lead TSSOP, Forced Convection

θ _{JA} by Velocity			
Linear Feet per Minute	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	114.5°C/W	98.0°C/W	88.0°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	73.2°C/W	66.6°C/W	63.5°C/W

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 20 Lead TSSOP


	θ_{JA} by Velocity		
Linear Feet per Minute	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	114.5°C/W	98.0°C/W	88.0°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	73.2°C/W	66.6°C/W	63.5°C/W

Transistor Count

The transistor count for ICS8543I is: 636

Package Outline and Package Dimensions

Package Outline - G Suffix for 20 Lead TSSOP

Table 8. Package Dimensions

All Dimensions in Millimeters			
Symbol	Minimum	Maximum	
N	20		
Α		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	6.40	6.60	
E	6.40 Basic		
E1	4.30	4.50	
е	0.65 Basic		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8543BGI	ICS8543BGI	20 Lead TSSOP	Tube	-40°C to 85°C
8543BGIT	ICS8543BGI	20 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C
8543BGILF	ICS8543BGILF	"Lead-Free" 20 Lead TSSOP	Tube	-40°C to 85°C
8543BGILFT	ICS8543BGILF	"Lead-Free" 20 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
Α		3	Updated Figure 1, CLK_EN Timing Diagram.	
Α		3	Updated Figure 1, CLK_EN Timing Diagram.	11/2/01
		1	Features section, Bullet 6 to read 3.3V LVDS levels instead of LVPECL.	F/C/00
A	6 - 10	Updated Parameter Measurement Information figures.	5/6/02	
		1	Features - deleted bullet ""Designed to meet or exceed the requirements of	
В			ANSI TIA/EIA-644"".	9/19/02
	4E	5	LVDS Table - changed V _{OD} typical value from 350mV to 280mV.	
	T2	2	Pin Characteristics - changed C _{IN} 4pF max. to 4pF typical.	
		4	Absolute Maximum Ratings - changed Output rating.	
С		9	Added Differential Clock Input Interface section.	1/5/04
C		10	Added LVPECL Clock Input Interface section.	1/5/04
		11	Added LVDS Driver Termination section.	
			Updated format throughout data sheet.	
		1	Features section - added lead-free bullet.	
		3	Updated Figure 1, CLK_EN Timing Diagram.	
	T4B	4	LVCMOS DC Characteristics Table - corrected typo in V_{IH} max. from V_{DD} - 0.3V to V_{DD} + 0.3V.	
_		10	Updated Differential Clock Input Interface section.	_ ,,_
D		11	Updated LVPECL Clock Input Interface section.	2/27/08
		12	Added Recommendation for Unused Input and Output Pins section.	
		13	Added Power Considerations section.	
	Т9	T9 Ordering Information Table - added lead-free Part/Order N	Ordering Information Table - added lead-free Part/Order Number, Marking and note.	
			Updated format throughout the datasheet.	ı
Е		1	Features Section - added Additive Phase Jitter bullet.	
	T5	6	AC Characteristics Table - added Additive Phase Jitter spec.	9/9/08
		7	Added Additive Phase Jitter Plot.	9/9/00
		9	Parameter Measurement Information - updated Output Rise/Fall Time diagram.	

Contact Information:

www.IDT.com

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com +480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800-345-7015 (inside USA) +408-284-8200 (outside USA)

