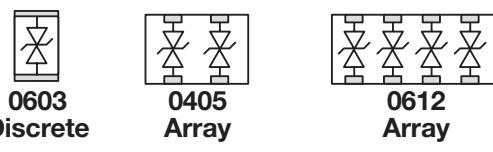


CAN BUS Varistor

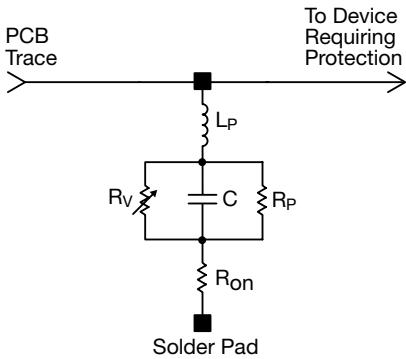

GENERAL DESCRIPTION

The CAN BUS varistor is a zinc oxide (ZnO) based ceramic semiconductor device with non-linear voltage-current characteristics (bi-directional) similar to back-to-back Zener diodes and an EMC capacitor in parallel (see equivalent circuit model). They have the added advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation. Devices are fabricated by a ceramic sintering process that yields a structure of conductive ZnO grains surrounded by electrically insulating barriers, creating varistor like behavior.

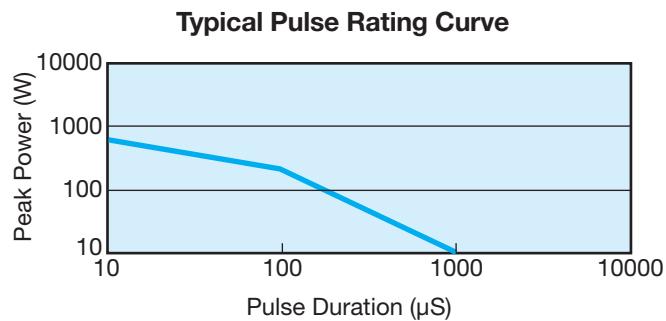
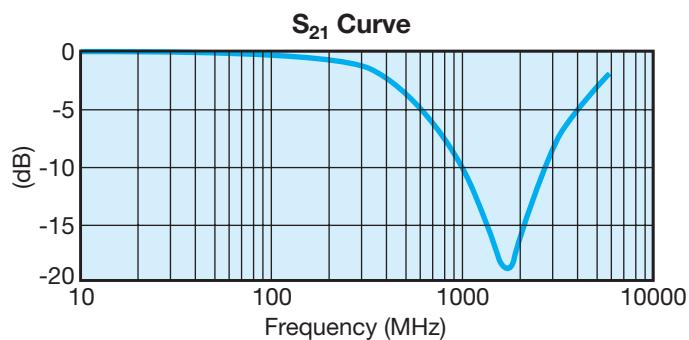
HOW TO ORDER

CAN	0001	D	P
Style	Case Size	Packaging Code (Reel Size)	Termination
Controlled Area	0001 = 0603 Discrete	D = 7" reel (1,000 pcs.)	P = Ni/Sn Alloy (Plated)
Network Varistor Series	0002 = 0405 2-Element	R = 7" reel (4,000 pcs.)	M = Ni/Sn Pb (Plated)
	0004 = 0612 4-Element	T = 13" reel (10,000 pcs.)	

PERFORMANCE CHARACTERISTICS


AVX Part No.	V _W (DC)	V _W (AC)	V _B	I _L	E _T	I _P	Cap.	Case Size	Elements
CAN0001_	≤18	≤14	120	2	0.015	4	22	0603	1
CAN0002_	≤18	≤14	70	2	0.015	4	22	0405	2
CAN0004	≤18	≤14	100	2	0.015	4	22	0612	4

Termination Finish Code
Packaging Code

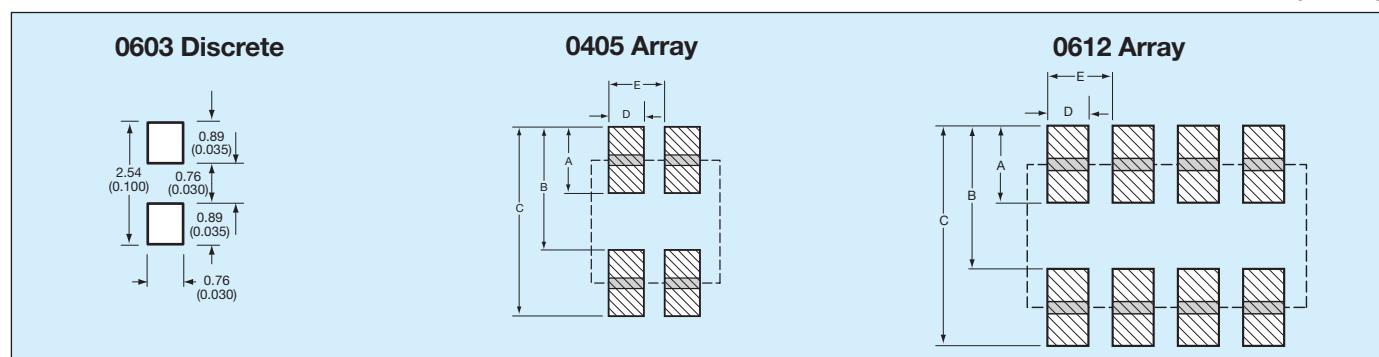


$V_W(\text{DC})$	DC Working Voltage (V)
$V_W(\text{AC})$	AC Working Voltage (V)
V_B	Typical Breakdown Voltage (V @ 1mA _{DC})
V_C	Clamping Voltage (V @ I_{VC})
I_{VC}	Test Current for V_C (A, 8x20μS)
I_L	Maximum Leakage Current at the Working Voltage (μA)
E_T	Transient Energy Rating (J, 10x1000μS)
I_P	Peak Current Rating (A, 8x20μS)
Cap	Maximum Capacitance (pF) @ 1 MHz and 0.5Vrms

EQUIVALENT CIRCUIT MODEL

Discrete MLV Model

Where: R_v = Voltage Variable resistance (per VI curve)
 $R_p \geq 10^{12} \Omega$
 C = defined by voltage rating and energy level
 R_{on} = turn on resistance
 L_p = parallel body inductance

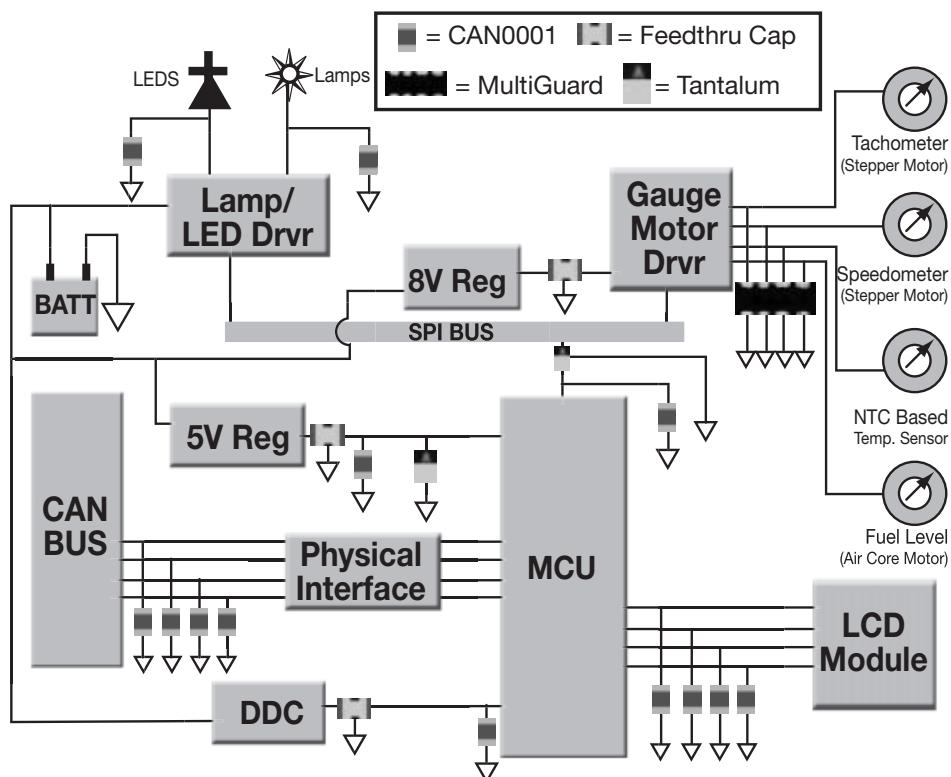
CAN BUS Varistor


PHYSICAL DIMENSIONS

mm (inches)

	0603 Discrete	0405 Array	0612 Array
Length	1.60 \pm 0.15 (0.063 \pm 0.006)	1.00 \pm 0.15 (0.039 \pm 0.006)	1.60 \pm 0.20 (0.063 \pm 0.008)
Width	0.80 \pm 0.15 (0.032 \pm 0.006)	1.37 \pm 0.15 (0.054 \pm 0.006)	3.20 \pm 0.20 (0.126 \pm 0.008)
Thickness	0.90 Max. (0.035 Max.)	0.66 Max. (0.026 Max.)	1.22 Max. (0.048 Max.)
Term Band Width	0.35 \pm 0.15 (0.014 \pm 0.006)	0.36 \pm 0.10 (0.014 \pm 0.004)	0.41 \pm 0.10 (0.016 \pm 0.010)

SOLDER PAD DIMENSIONS


mm (inches)

APPLICATION

AVX CAN BUS varistors offer significant advantages in general areas of a typical CAN network as shown on the right. Some of the advantages over diodes include:

- space savings
- higher ESD capability @ 25kV contact
- higher in rush current (4A) 8 x 20 μ s
- FIT rate \leq 0.1 failures (per billion hours)

