

Split Dual Si/SiC Hybrid IGBT Module 150 Amperes/1200 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches Millime	
Α	4.32	109.8
В	2.21	56.1
С	0.71	18.0
D	3.70±0.02	94.0±0.5
Е	2.026	51.46
F	3.17	80.5
G	1.96	49.8
Н	1.00	25.5
K	0.87	22.0
L	0.266	6.75
М	0.26	6.5
N	0.59	15.0
Р	0.586	14.89

Dimensions	Inches	Millimeters
Q	0.449	11.40
R	0.885	22.49
S	1.047	26.6
Т	0.15	3.80
U	0.16	4.0
V	0.30	7.5
W	0.045	1.15
X	0.03	0.8
Υ	0.16	4.0
Z	0.47	12.1
AA	0.17 Dia.	4.3 Dia.
AB	0.10 Dia.	2.5 Dia.
AC	0.08 Dia.	2.1 Dia.

ROHS

Description:

Powerex IGBT Modules are designed for use in high frequency applications; upwards of 30 kHz for hard switching applications and 80 kHz for soft switching applications. Each module consists of two IGBT Transistors with each transistor having a reverse-connected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- ☐ Low EsW(off)
- □ Aluminum Nitride Isolation
- □ Discrete Super-Fast Recovery Free-Wheel Silicon Carbide Schottky Diode
- ☐ Low Internal Inductance
- ☐ 2 Individual Switches per Module
- ☐ Isolated Baseplate for Easy Heat Sinking
- ☐ Copper Baseplate
- □ RoHS Compliant

Applications:

- Energy Saving PowerSystems such as:Fans; Pumps; Consume
 - Fans; Pumps; Consumer Appliances
- ☐ High Frequency Type Power Systems such as:
 - UPS; High Speed Motor Drives; Induction Heating; Welder; Robotics

Vehicle and Aviation Systems

☐ High Temperature Power Systems such as: Power Electronics in Electric

Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.

QID1215005 Split Dual Si/SiC Hybrid IGBT Module 150 Amperes/1200 Volts

Absolute Maximum Ratings, $T_j = 25^{\circ}\text{C}$ unless otherwise specified

Ratings	Symbol	QID1215003	Units
Junction Temperature	Тј	-40 to 150	°C
Storage Temperature	T _{stg}	-40 to 150	°C
Collector-Emitter Voltage (G-E Short)	VCES	1200	Volts
Gate-Emitter Voltage (C-E Short)	V _{GES}	±20	Volts
Collector Current (T _C = 25°C)	IC	150*	Amperes
Peak Collector Current	I _{CM}	300*	Amperes
Emitter Current** (T _C = 25°C)	ΙΕ	150*	Amperes
Repetitive Peak Emitter Current (T _C = 25°C)**	IEM	300*	Amperes
Maximum Collector Dissipation (T _C = 25°C, T _j ≤ 150°C)	PC	960	Watts
Mounting Torque, M6 Mounting	_	40	in-lb
Weight	_	270	Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.)	V _{ISO}	2500	Volts

IGBT Electrical Characteristics, T_i = 25°C unless otherwise specified

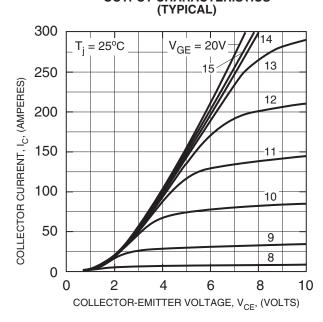
Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector-Cutoff	Current	ICES	V _{CE} = V _{CES} , V _{GE} = 0V	_	_	1.0	mA
Gate Leakage (Current	IGES	V _{GE} = V _{GES} , V _{CE} = 0V	_	_	0.5	μΑ
Gate-Emitter Th	reshold Voltage	V _{GE(th)}	I _C = 15mA, V _{CE} = 10V	4.5	6.0	7.5	Volts
Collector-Emitte	er Saturation Voltage	VCE(sat)	I _C = 150A, V _{GE} = 15V, T _j = 25°C	_	5.0	6.5	Volts
			I _C = 150A, V _{GE} = 15V, T _j = 125°C	_	5.0	_	Volts
Total Gate Cha	rge	QG	V _{CC} = 600V, I _C = 150A, V _{GE} = 15V	_	680	_	nC
Input Capacitar	nce	C _{ies}		_	_	24	nf
Output Capacita	ance	C _{oes}	$V_{CE} = 10V, V_{GE} = 0V$	_	_	2.0	nf
Reverse Transfe	er Capacitance	C _{res}		_	_	0.45	nf
Inductive	Turn-on Delay Time	^t d(on)	V _{CC} = 600V, I _C = 150A,	_	_	TBD	ns
Load	Rise Time	t _r	$V_{GE1} = V_{GE2} = 15V,$	_	_	TBD	ns
Switch	Turn-off Delay Time	t _d (off)	$R_G = 2.1\Omega$,	_	_	TBD	ns
Time	TimeFall Time	t _f	Inductive Load Switching Operation	_	_	TBD	ns

^{*} Pulse width and repetition rate should be such that device junction temperature (T_j) does not exceed T_{j(max)} rating. **Represents characteristics of the anti-parallel, emitter-to-collector silicon carbide Schottky diode (FWDi).

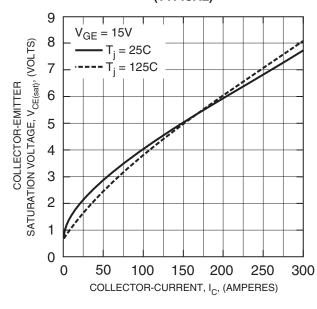
QID1215005 Split Dual Si/SiC Hybrid IGBT Module 150 Amperes/1200 Volts

Reverse Schottky Diode Characteristics, T_{j} = 25 °C unless otherwise specified

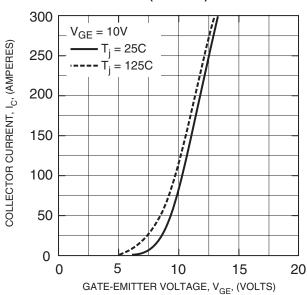
Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Diode Forward Voltage	VFM	IF = 150A, VGE = -5V	_	1.45	1.75	Volts
		$I_F = 150A$, $V_{GE} = -5V$, $T_j = 175$ °C	_	1.95	2.35	Volts
Diode Reverse Current	I _R	V _R = 1200V	_	1.8	10	mA
		V _R = 1200, T _j = 175°C	_	12	66.6	mA
Diode Capacitive Charge	QC	$V_R = 1200V$, $I_F = 150A$, $di/dt = 2200A/\mu s$	· —	600	_	nC

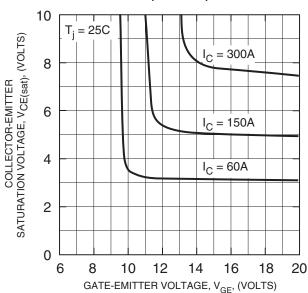

Thermal and Mechanical Characteristics, T_i = 25 °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)} Q	Per IGBT 1/2 Module,	_	_	0.13	°C/W
		T _C Reference Point Under Chips				
Thermal Resistance, Junction to Case	R _{th(j-c)} D	Per FWDi 1/2 Module, T _C Reference	_	_	0.25	°C/W
		T _C Reference Point Under Chips				
Contact Thermal Resistance	R _{th(c-f)}	Per 1/2 Module, Thermal Grease Applied	_	0.04	_	°C/W
External Gate Resistance	RG		3.1	_	31	Ω
Internal Inductance	L _{int}	IGBT Part	_	10	_	nH

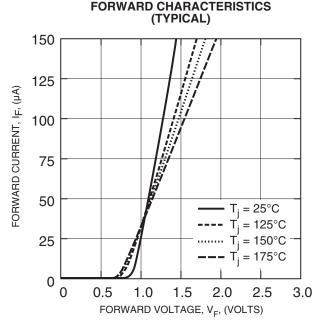


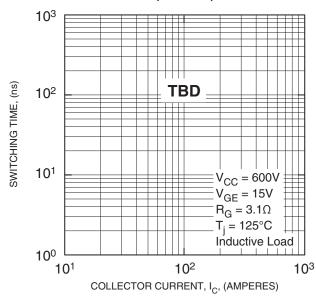
QID1215005 Split Dual Si/SiC Hybrid IGBT Module 150 Amperes/1200 Volts


OUTPUT CHARACTERISTICS

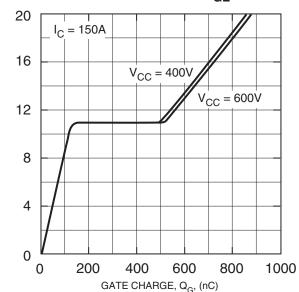

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

TRANSFER CHARACTERISTICS (TYPICAL)


COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)


QID1215005 Split Dual Si/SiC Hybrid IGBT Module 150 Amperes/1200 Volts

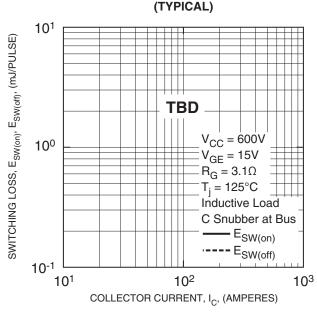
FREE-WHEEL SCHOTTKY DIODE


CAPACITANCE VS. VCE (TYPICAL) 102 V_{GE} = 0V C_{ies} 101 100 100 101 100 101 102

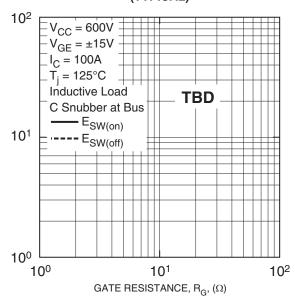
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

GATE CHARGE VS. VGE

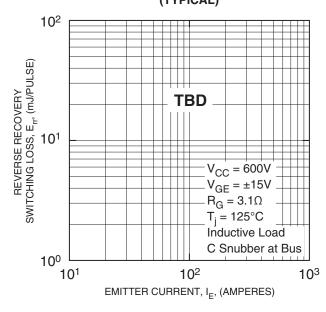
COLLECTOR-EMITTER VOLTAGE, V_{CE} , (VOLTS)

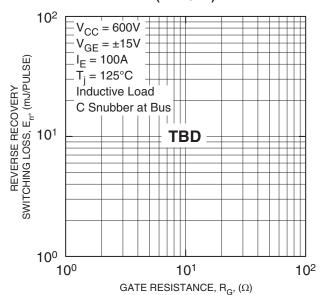


GATE-EMITTER VOLTAGE, V_{GE}, (VOLTS)

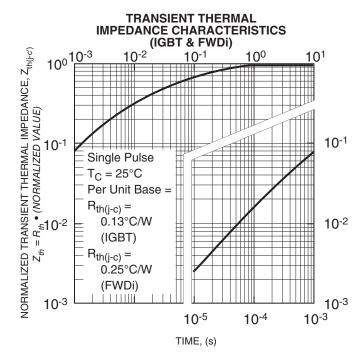


QID1215005 Split Dual Si/SiC Hybrid IGBT Module 150 Amperes/1200 Volts


SWITCHING LOSS VS. COLLECTOR CURRENT


SWITCHING LOSS VS. GATE RESISTANCE (TYPICAL)

REVERSE RECOVERY SWITCHING LOSS VS. EMITTER CURRENT (TYPICAL)


REVERSE RECOVERY SWITCHING LOSS VS. GATE RESISTANCE (TYPICAL)

 $SWITCHING\ LOSS,\ E_{SW(on)},\ E_{SW(off)},\ (mJ/PULSE)$

QID1215005 Split Dual Si/SiC Hybrid IGBT Module 150 Amperes/1200 Volts

